Uniform Ultimate Boundedness of Probe-to-Probe Dynamics in Dual Probe Atomic Force Microscopy

Author(s):  
Ayad Al-Ogaidi ◽  
Douglas Bristow

Atomic force microscopes use a probe to interface with matter at the nanoscale through a variety of imaging or manipulation methods. A dual-probe atomic force microscope (DP-AFM) has been proposed for simultaneous imaging and manipulation. One challenge of DP-AFM is probe-to-probe contact, which may occur intentionally such as when locating one probe with the other. This work studies the stability for such interactions where the 1st probe is in the tapping mode (typically used for imaging) and 2nd probe is in the contact mode (typically used for manipulation). A state dependent switched model is proposed for DP-AFM. A theorem is proposed for uniformly ultimately bounded (UUB) stability of switched systems under a sequence nonincreasing condition and applied to the DP-AFM problem.

Author(s):  
H. Kinney ◽  
M.L. Occelli ◽  
S.A.C. Gould

For this study we have used a contact mode atomic force microscope (AFM) to study to topography of fluidized cracking catalysts (FCC), before and after contamination with 5% vanadium. We selected the AFM because of its ability to well characterize the surface roughness of materials down to the atomic level. It is believed that the cracking in the FCCs occurs mainly on the catalysts top 10-15 μm suggesting that the surface corrugation could play a key role in the FCCs microactivity properties. To test this hypothesis, we chose vanadium as a contaminate because this metal is capable of irreversibly destroying the FCC crystallinity as well as it microporous structure. In addition, we wanted to examine the extent to which steaming affects the vanadium contaminated FCC. Using the AFM, we measured the surface roughness of FCCs, before and after contamination and after steaming.We obtained our FCC (GRZ-1) from Davison. The FCC is generated so that it contains and estimated 35% rare earth exchaged zeolite Y, 50% kaolin and 15% binder.


Friction ◽  
2021 ◽  
Author(s):  
Xinfeng Tan ◽  
Dan Guo ◽  
Jianbin Luo

AbstractDynamic friction occurs not only between two contact objects sliding against each other, but also between two relative sliding surfaces several nanometres apart. Many emerging micro- and nano-mechanical systems that promise new applications in sensors or information technology may suffer or benefit from noncontact friction. Herein we demonstrate the distance-dependent friction energy dissipation between the tip and the heterogeneous polymers by the bimodal atomic force microscopy (AFM) method driving the second order flexural and the first order torsional vibration simultaneously. The pull-in problem caused by the attractive force is avoided, and the friction dissipation can be imaged near the surface. The friction dissipation coefficient concept is proposed and three different contact states are determined from phase and energy dissipation curves. Image contrast is enhanced in the intermediate setpoint region. The work offers an effective method for directly detecting the friction dissipation and high resolution images, which overcomes the disadvantages of existing methods such as contact mode AFM or other contact friction and wear measuring instruments.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Juan Gros-Otero ◽  
Samira Ketabi ◽  
Rafael Cañones-Zafra ◽  
Montserrat Garcia-Gonzalez ◽  
Cesar Villa-Collar ◽  
...  

Abstract Background To compare the anterior surface roughness of two commercially available posterior chamber phakic intraocular lenses (IOLs) using atomic force microscopy (AFM). Methods Four phakic IOLs were used for this prospective, experimental study: two Visian ICL EVO+ V5 lenses and two iPCL 2.0 lenses. All of them were brand new, were not previously implanted in humans, were monofocal and had a dioptric power of − 12 diopters (D). The anterior surface roughness was assessed using a JPK NanoWizard II® atomic force microscope in contact mode immersed in liquid. Olympus OMCL-RC800PSA commercial silicon nitride cantilever tips were used. Anterior surface roughness measurements were made in 7 areas of 10 × 10 μm at 512 × 512 point resolution. The roughness was measured using the root-mean-square (RMS) value within the given regions. Results The mean of all anterior surface roughness measurements was 6.09 ± 1.33 nm (nm) in the Visian ICL EVO+ V5 and 3.49 ± 0.41 nm in the iPCL 2.0 (p = 0.001). Conclusion In the current study, we found a statistically significant smoother anterior surface in the iPCL 2.0 phakic intraocular lenses compared with the VISIAN ICL EVO+ V5 lenses when studied with atomic force microscopy.


2013 ◽  
Vol 84 (8) ◽  
pp. 083701 ◽  
Author(s):  
Eika Tsunemi ◽  
Kei Kobayashi ◽  
Noriaki Oyabu ◽  
Masaharu Hirose ◽  
Yoshiko Takenaka ◽  
...  

1996 ◽  
Vol 273 (1-2) ◽  
pp. 138-142 ◽  
Author(s):  
Seizo Morita ◽  
Satoru Fujisawa ◽  
Eigo Kishi ◽  
Masahiro Ohta ◽  
Hitoshi Ueyama ◽  
...  

2008 ◽  
Vol 1143 ◽  
Author(s):  
Bijandra Kumar ◽  
Mickaël Castro ◽  
Jianbo Lu ◽  
Jean-François Feller

ABSTRACTOrganic vapour sensors based on poly (methylmethacrylate)-multi-wall carbon nanotubes (PMMA-CNT) conductive polymer nanocomposite (CPC) were developed via layer by layer technique by spray deposition. CPC Sensors were exposed to three different classes of solvents (chloroform, methanol and water) and their chemo-electrical properties were followed as a function of CNTcontent in dynamic mode. Detection time was found to be shorter than that necessary for full recovery of initial state. CNT real three dimensional network has been visualized by Atomic force microscopy in a field assisted intermittent contact mode. More interestingly real conductive network system and electrical ability of CPC have been explored by current-sensing atomic force microscopy (CS-AFM). Realistic effect of voltage on electrical conductivity has been found linear.


2009 ◽  
Vol 615-617 ◽  
pp. 15-18 ◽  
Author(s):  
Emil Tymicki ◽  
Krzysztof Grasza ◽  
Katarzyna Racka ◽  
Marcin Raczkiewicz ◽  
Tadeusz Łukasiewicz ◽  
...  

4H-SiC single crystals grown by the seeded physical vapour transport method have been investigated. These crystals were grown on 6H-SiC seeds. The influence of the seed temperature, form and granulation of SiC source materials on the stability and efficiency of the 4H polytype growth have been investigated. A new way of the seed mounting - with an open backside - has been used. Crystals obtained were free of structural defects in the form of hexagonal voids. The crystalline structure of SiC crystals was investigated by EBSD (Electron Backscatter Diffraction) and X-Ray diffraction methods. Moreover, defects in crystals and wafers cut from these crystals were examined by optical, scanning electron and atomic force microscopy combined with KOH etching.


Sign in / Sign up

Export Citation Format

Share Document