Parametric Modeling and Optimal Control of a Combined Heating and Power System With Energy Storage

Author(s):  
Claudia Lucia De Pascalis ◽  
Stephanie Stockar

Abstract Cogeneration is a well-known and cost effective solution for generating power and heat within the same plant, leading to improved overall efficiency and reduced generation cost. Combined heating and power systems can facilitate the penetration of renewable energy sources in medium size applications through the integration of electric and thermal energy storage units. Due to the complexity of the plant as well as significantly variability in power demand and generation, the design and operation of such systems requires a systematic co-optimization of plant and controller for guaranteeing near optimal performance. In this scenario, this paper presents a physics-based parametric modeling approach for the characterization of the main components of a 1MW combined heating and power system that includes renewable sources, electric and thermal storage devices. To demonstrate the model flexibility and potential benefits achieved by an optimal sizing, the system energy management is optimized using Dynamic Programming. The operational costs for different configurations are compared showing that an optimization of the energy management strategy in conjunction with an improved system sizing lead to more than 6% of reduction in the operational cost.

2021 ◽  
Vol 41 (1) ◽  
pp. e83905
Author(s):  
Elkin Dario Granados Hernández ◽  
Nelson Leonardo Diaz Aldana ◽  
Adriana Carolina Luna Hernández

Energy management systems are one of the most important components in the operation of an electric microgrid. They are responsible for ensuring the supervision of the electrical system, as well as the coordination and reliability of all loads and distributed energy resources in order for the microgrid to be operated as a unified entity. Because of that, an energy management system should be fast enough at processing data and defining control action to guarantee the correct performance of the microgrid. This paper explores the design and implementation of an energy management system deployed over a dedicated electronic device. The proposed energy management device coordinates the distributed energy resources and loads in a residential-scale islanded microgrid, in accordance with a rule-based energy management strategy that ensures reliable and safe operation of the battery-based energy storage system. A hardware-int-he-loop test was performed with a real-time simulation platform to show the operation of the electronic device


2018 ◽  
Vol 58 ◽  
pp. 01012 ◽  
Author(s):  
Dmitry Krupenev

The paper deals with the problem of the accounting of renewable energy sources and energy storage systems in assessment of power system adequacy. Development of renewable energy sources and energy storage systems in the present day power systems is one of the main focuses. In power systems of some countries the share of electric energy generated by renewable energy sources is above 50 % in the energy balance. Therefore, the plans on development of the present day power systems must be elaborated with the proper accounting of operation of renewable energy sources and energy storage systems and the sound capacity reserves in terms of these facilities. The paper presents the algorithms for the accounting of renewable energy sources and energy storage systems. The experimental studies performed illustrate feasibility of the suggested algorithms.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5786
Author(s):  
Stefanos Ntomalis ◽  
Petros Iliadis ◽  
Konstantinos Atsonios ◽  
Athanasios Nesiadis ◽  
Nikos Nikolopoulos ◽  
...  

The defossilization of power generation is a prerequisite goal in order to reduce greenhouse gas emissions and transit for a sustainable economy. Achieving this goal requires increasing the penetration of renewable energy sources (RESs) such as solar and wind power. The gradual shrinking of conventional generation units in an energy map introduces new challenges to the stability of power systems as there is a considerable reduction of stored rotational energy in the synchronous generators (SGs) and the capability to control their power output, which has been taken for granted until today. Inertia and primary reserve reduction have a substantial effect on the ability of the power system to maintain its security and self-resilience during contingency events. Such issues become more evident in the case of non-interconnected islands (NII) as they have unique features associated with their small size and low inertia. The present study examines in depth the NII system of Madeira, which is composed of thermal, hydro, solid-waste, wind and solar generation units, and additional RES integration is planned for the near future. Electromagnetic transient (EMT) simulations are performed for both the current and future states of the system, including the installation of planned variable RES capacities. To alleviate the stability issues that occurred in the high-RES scenario, the introduction of a utility-scale battery energy storage system (BESS), capable of mitigating the active power imbalance due to the power system’s disturbances resultant of RES penetration, is examined. In addition, a comparison between a flywheel energy storage system (FESS) and BESS is shortly investigated. The grid has been modeled and simulated utilizing the open-source, object-oriented modeling language Modelica. The dynamic simulation results proved that battery storage is a promising technology that can be a solution for transitioning to a sustainable power system, maintaining its self-resilience under severe disturbances such as rapid load changes, the tripping of generation units and short-circuits.


Author(s):  
Romano Acri ◽  
Fulvio Bassetti ◽  
Maria Carmen Falvo ◽  
Letizia Magaldi ◽  
Matteo Manganelli ◽  
...  

The decarbonization of the electrical energy sector is in progress for contrasting the climate changes, with a relevant increase of the Renewable Energy Sources (RES) power plants, mostly in Dispersed Generation (DG). The adequacy and the security of power systems, with a huge penetration of RES in DG is possible with a suitable integration of energy storage. In fact, energy storages are able to provide many different services for long-term adequacy and real time security. In this framework the present paper deals with a Thermal Energy Storage (TES) proposed for power system services. The technology presented is made up of modules containing a bed of fluidizable solid particles, which can store thermal energy from waste heat, process heat and/or from electricity. Stored thermal energy can be released, e.g. as superheated steam, for thermal uses or converted into electricity, by means of steam turbines. Some possible applications are then reported explaining advantages and limits.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3481 ◽  
Author(s):  
Abhimanyu Kaushal ◽  
Dirk Van Hertem

Liberalization of electricity markets has brought focus on the optimal use of generation and transmission infrastructure. In such a scenario, where the power transmission systems are being operated closer to their critical limits, Ancillary Services (AS) play an important role in ensuring secure and cost-effective operation of power systems. Emerging converter-based HVDC technologies and integration of renewable energy sources (RES) have changed the power system dynamics which are based on classical power plant operation and synchronous generator dynamics. Transmission system interconnections between different countries and integrated energy markets in Europe have led to a reduction in the use of energy from non-renewable fossil-based sources. This review paper gives an insight into ancillary services definitions and market practices for procurement and activation of these ancillary services in different control areas within the European Network of Transmission System Operators for Electricity (ENTSO-E). The focus lies particularly on ancillary services from HVDC systems. It is foreseen that DC elements will play an important role in the control and management of the future power system and in particular through ancillary services provision. Keeping this in view, the capability of HVDC systems to provide ancillary services is presented.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3627
Author(s):  
Ramzi Saidi ◽  
Jean-Christophe Olivier ◽  
Mohamed Machmoum ◽  
Eric Chauveau

Hybrid systems constitute one of the solutions for supplying isolated applications. Such systems are classically based on clean energy sources. When the renewable energy sources have intermittent productions, they are associated with storage systems. This makes the system economically more interesting. Economically speaking, hybrid energy systems using multiple energy sources are often expensive and their cost must be optimized. This optimization can be done for the system sizing or for its energy management. However, optimizing one does not guarantee the optimization of the other. Indeed, previous studies optimize either the design and apply it with a simple energy management strategy, or the energy management with predetermined sizing supposed optimized, while minimizing the number of sources that contain the hybrid system. In this paper, an energy management and sizing algorithm, applicable to multisource systems, composed of a large number of sources, is proposed. The method is based on a modified centered moving average filters architecture for energy management, which permits one to consider and to automatically balance the forecasting errors in solar and load profiles. The energy management is then limited to a small number of parameters, which are the averaging horizon and weight coefficients. It is then possible to optimize, at the same time, the sizing and the energy management of such power systems. The proposed optimization criterion is based on a techno-economic approach, by considering acquisition and operation costs, as well as the ageing of the different devices. The main novelty of this approach is the use of energy management formulation that is able to manage an architecture with a high number of controlled devices. An original formulation of centered moving average filters also permits one to automatically balance the power bias due to forecasting errors on the renewable resources and the load profile. The method is applied to five devices, including photovoltaic panels, a fuel cell, two batteries with different technologies (Li-ion and lead-acid) and supercapacitors.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1598
Author(s):  
Dongmin Kim ◽  
Kipo Yoon ◽  
Soo Hyoung Lee ◽  
Jung-Wook Park

The energy storage system (ESS) is developing into a very important element for the stable operation of power systems. An ESS is characterized by rapid control, free charging, and discharging. Because of these characteristics, it can efficiently respond to sudden events that affect the power system and can help to resolve congested lines caused by the excessive output of distributed generators (DGs) using renewable energy sources (RESs). In order to efficiently and economically install new ESSs in the power system, the following two factors must be considered: the optimal installation placements and the optimal sizes of ESSs. Many studies have explored the optimal installation placement and the sizing of ESSs by using analytical approaches, mathematical optimization techniques, and artificial intelligence. This paper presents an algorithm to determine the optimal installation placement and sizing of ESSs for a virtual multi-slack (VMS) operation based on a power sensitivity analysis in a stand-alone microgrid. Through the proposed algorithm, the optimal installation placement can be determined by a simple calculation based on a power sensitivity matrix, and the optimal sizing of the ESS for the determined placement can be obtained at the same time. The algorithm is verified through several case studies in a stand-alone microgrid based on practical power system data. The results of the proposed algorithm show that installing ESSs in the optimal placement could improve the voltage stability of the microgrid. The sizing of the newly installed ESS was also properly determined.


Author(s):  
B. Venkateswara Rao ◽  
Ramesh Devarapalli ◽  
H. Malik ◽  
Sravana Kumar Bali ◽  
Fausto Pedro García Márquez ◽  
...  

The trend of increasing demand creates a gap between generation and load in the field of electrical power systems. This is one of the significant problems for the science, where it require to add new generating units or use of novel automation technology for the better utilization of the existing generating units. The automation technology highly recommends the use of speedy and effective algorithms in optimal parameter adjustment for the system components. So newly developed nature inspired Bat Algorithm (BA) applied to discover the control parameters. In this scenario, this paper considers the minimization of real power generation cost with emission as an objective. Further, to improve the power system performance and reduction in the emission, two of the thermal plants were replaced with wind power plants. In addition, to boost the voltage profile, Static VAR Compensator (SVC) has been integrated. The proposed case study, i.e., considering wind plant and SVC with BA, is applied on the IEEE30 bus system. Due to the incorporation of wind plants into the system, the emission output is reduced, and with the application of SVC voltage profile improved.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1060
Author(s):  
Md Mamun Ur Rashid ◽  
Majed A. Alotaibi ◽  
Abdul Hasib Chowdhury ◽  
Muaz Rahman ◽  
Md. Shafiul Alam ◽  
...  

From a residential point of view, home energy management (HEM) is an essential requirement in order to diminish peak demand and utility tariffs. The integration of renewable energy sources (RESs) together with battery energy storage systems (BESSs) and central battery storage system (CBSS) may promote energy and cost minimization. However, proper home appliance scheduling along with energy storage options is essential to significantly decrease the energy consumption profile and overall expenditure in real-time operation. This paper proposes a cost-effective HEM scheme in the microgrid framework to promote curtailing of energy usage and relevant utility tariff considering both energy storage and renewable sources integration. Usually, the household appliances have different runtime preferences and duration of operation based on user demand. This work considers a simulator designed in the C++ platform to address the domestic customer’s HEM issue based on usages priorities. The positive aspects of merging RESs, BESSs, and CBSSs with the proposed optimal power sharing algorithm (OPSA) are evaluated by considering three distinct case scenarios. Comprehensive analysis of each scenario considering the real-time scheduling of home appliances is conducted to substantiate the efficacy of the outlined energy and cost mitigation schemes. The results obtained demonstrate the effectiveness of the proposed algorithm to enable energy and cost savings up to 37.5% and 45% in comparison to the prevailing methodology.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1660
Author(s):  
Seydali Ferahtia ◽  
Ali Djeroui ◽  
Tedjani Mesbahi ◽  
Azeddine Houari ◽  
Samir Zeghlache ◽  
...  

This paper aims at presenting an energy management strategy (EMS) based upon optimal control theory for a battery–supercapacitor hybrid power system. The hybrid power system consists of a lithium-ion battery and a supercapacitor with associated bidirectional DC/DC converters. The proposed EMS aims at computing adaptive gains using the salp swarm algorithm and load following control technique to assign the power reference for both the supercapacitor and the battery while achieving optimal performance and stable voltage. The DC/DC converter model is derived utilizing the first-principles method and computes the required gains to achieve the desired power. The fact that the developed algorithm takes disturbances into account increases the power elements’ life expectancies and supplies the power system with the required power.


Sign in / Sign up

Export Citation Format

Share Document