Development of Wire Actuated Monolithic Soft Gripper Positioned by Robot Manipulator

Author(s):  
Rafael Barreto Gutierrez ◽  
Martin Garcia ◽  
Joan McDuffie ◽  
Courtney Long ◽  
Ayse Tekes

Abstract This paper presents the design and development of a two fingered, monolithically designed compliant gripper mounted on a two-link robot. Rigid grippers traditionally designed by rigid links and joints might have low precision due to friction and backlash. The proposed gripper is designed as a single piece compliant mechanism consisted of several flexible links and actuated by wire through a servo motor. The gripper is attached to a two-link arm robot driven by three step motors. An additional servo motor can also rotate the base of the robot. While the robot is 3D printed using polylactic acid (PLA), the gripper is 3D printed in thermoplasticpolyurethane (TPU). Two force sensors are attached to the right and left ends of the gripper to measure grasping force. Experimental testing for grasping various objects having different sizes, shapes and weights is carried out to verify the robust performance of the proposed design. Through the experimentation, it’s been noted that the compliant gripper can successfully lift up objects at a maximum mass of 200 g and have a better performance if the objects’width is closer to the width of the gripper. The presented mechanism can be utilized as a service robot for elderly people to assist them pick and place objects or lift objects if equipped with necessary sensors.

Author(s):  
Tresna Dewi ◽  
Siti Nurmaini ◽  
Pola Risma ◽  
Yurni Oktarina ◽  
Muhammad Roriz

The arm robot manipulator is suitable for substituting humans working in tomato plantation to ensure tomatoes are handled efficiently. The best design for this robot is four links with robust flexibility in x, y, and z-coordinates axis. Inverse kinematics and fuzzy logic controller (FLC) application are for precise and smooth motion. Inverse kinematics designs the most efficient position and motion of the arm robot by adjusting mechanical parameters. The FLC utilizes data input from the sensors to set the right position and motion of the end-effector. The predicted parameters are compared with experimental results to show the effectiveness of the proposed design and method. The position errors (in x, y, and z-axis) are 0.1%, 0.1%, and 0.04%. The rotation errors of each robot links (θ1, θ2, and θ3) are 0%, 0.7% and 0.3%. The FLC provides the suitable angle of the servo motor (θ4) responsible in gripper motion, and the experimental results correspond to FLC’s rules-based as the input to the gripper motion system. This setup is essential to avoid excessive force or miss-placed position that can damage tomatoes. The arm robot manipulator discussed in this study is a pick and place robot to move the harvested tomatoes to a packing system.


2017 ◽  
Vol 28 (17) ◽  
pp. 2388-2402 ◽  
Author(s):  
Yiling Yang ◽  
Yanding Wei ◽  
Junqiang Lou ◽  
Fengran Xie

This article presents the design, modeling, and experimental testing of a novel piezo-driven XY stage with parallel, decoupled, and compact kinematic structure. The structural design of the stage is based on a hybrid compliant mechanism employing the right-circular double-rocker mechanism and the leaf-type parallelogram mechanism. The proposed XY stage is capable of producing a large workspace range, an excellent decoupled motion, and a suitable resonant frequency. By means of the pseudorigid-body-model method, the theoretical models of the XY stage are derived. Using the finite element analysis simulations, the optimal structural parameters are acquired, and the theoretical models are analyzed and validated. A prototype of the proposed stage was finally manufactured, and several experimental investigations were performed to validate its performances. The experimental results show that the XY stage has a large amplification ratio of 7.48 and a large workspace range of 150.3 µm × 147.9 µm. In addition, the parasitic motion along the y-axis ( x-axis) accounts for 0.94% (0.74%) of the x-axis ( y-axis) motion, which indicates that the stage possesses excellent decoupling characteristics.


Author(s):  
Muhammad Apriliyanto ◽  
Miftachul Ulum ◽  
Koko Joni

<em>The process of folding clothes is one of the activities carried out in the laundry business or household. The activity is fairly easy but many people are still lazy to do it. As a result, clothes that have been washed will fall apart in certain rooms, thereby reducing the aesthetic value of a home. Semi Automatic T-Shirt Folding Machine is the right solution to make folding clothes easier and more time efficient. This tool is equipped with a servo motor that moves the folding board that has been designed in such a way that the user only needs to manghandle the shirt just once and simply push one button then the shirt will fold itself and will be neatly arranged through the clothes stacker board. The PID method is applied to DC motors that move under the clothes folder so that the buildup of clothes underneath will not be pressured upward when the clothes are piled up when they are folded. Ultrasonic sensor will measure the right height between the clothes with the door opening the stacking clothes with kp = 1, ki = 0.1, kd = 0.5 for thin clothes and kp = 5, ki = 1, kd = 2.5 for thick clothes so that the movement of the motor can adjust its speed . This tool can fold one shirt in 16.83 seconds 11 seconds faster than folding clothes manually</em>


Author(s):  
Ching-Chang Wong ◽  
Hsuan Ming Feng ◽  
Yu-Cheng Lai ◽  
Hsiang-Yun Chen

This paper designed a 7-DOF redundant robot manipulator that can flexibly and efficiently pick-up random objects. The developed 7-DOF machine with an additional redundancy achieved great progress in terms of flexibility and efficiency in the operational space. A robot operating system (ROS) was used to configure the manipulator system’s software modules, supporting convenient system interface, appropriate movement control policy, and powerful hardware device management for better regulation of the manipulator’s motions. A 3D type Point Cloud Library (PCL) was utilized to perform a novel point cloud image pre-processing method that did not only reduce the point cloud number but also maintained the original quality. The results of the experiment showed that the estimation speed in object detection and recognition procedure improved significantly. The redundant robot manipulator architecture with the two-stage search algorithm was able to find the optimal null space. Suitable parameters in D-H transformation of forward kinematics were selected to efficiently control and position the manipulator in the right posture. Meanwhile, the reverse kinematics estimated all angles of the joints through the known manipulator position, orientation, and redundancy. Finally, motion panning implementation of manipulator rapidly and successfully reached the random object position and automatically drew it up to approximate the desired target.


Author(s):  
Md. Hazrat Ali ◽  
Yernar Kuralbay ◽  
Aidos Aitmaganbet ◽  
M.A.S. Kamal
Keyword(s):  

Author(s):  
Mohamed B. Trabia ◽  
Woosoon Yim ◽  
Zohaib Rehmat ◽  
Jesse Roll

Hummingbirds and some insects exhibit “Figure-8” flapping motion that allows them to go through a variety of maneuvers including hovering. Understanding the flight characteristics of Figure-8 flapping motion can potentially yield the foundation of flapping wing UAVs that can experience similar maneuverability. In this paper, a mathematical model of the dynamic and aerodynamic forces associated with Figure-8 motion generated by a spherical four bar mechanism is developed. For validation, a FWMAV prototype with the wing attached to a coupler point and driven by a DC servo motor is created for experimental testing. Wind tunnel testing is conducted to determine the coefficients of flight and the effects of dynamic stall. The wing is driven at speeds up to 12.25 Hz with results compared to that of the model. The results indicate good correlation between mathematical model and experimental prototype.


2019 ◽  
Vol 13 (2) ◽  
pp. 117-122
Author(s):  
Vande Aaditee Vishnu ◽  
Pronob Kumar Sanyal ◽  
Shivsagar Tewary ◽  
Kumar Nilesh ◽  
Roy Malvika Suresh Prasad ◽  
...  

Background. This study evaluated the viability of platelet-rich plasma for enhancement of osseous and associated soft tissue healing around single-piece implants, subjected to immediate loading and to compare it with a control site not treated with PRP. Methods. Twenty completely edentulous patients were selected and 2 one-piece implants with O-ball head were placed for mandibular overdenture. The implant on the right side was treated with PRP whereas the left side implant served as a control. All the cases were immediately loaded and marginal bone loss, probing depth, percussion, implant mobility and peri-implantitis were assessed and compared at 3, 6, 9 and 12 months. Results. Overall analysis of the results showed less marginal bone loss, probing depth, percussion, implant mobility and periimplantitis around implants treated with PRP; however, the results were insignificant statistically. Conclusion. PRP can be used as a viable treatment adjunct in immediately loaded one-piece implants.


2014 ◽  
Vol 116 (11) ◽  
pp. 1-26
Author(s):  
Joanna Gorin

Background/Context Principles of evidential reasoning have often been discussed in the context of educational and psychological measurement with respect to construct validity and validity arguments. More recently, Mislevy proposed the metaphor of assessment as an evidentiary argument about students’ learning and abilities given their behavior in particular circumstances. An assessment argument consists of a claim one wants to make, typically about student learning, and evidence that supports that claim. From this perspective, the quality of our assessments are a function of both whether we have built our arguments about the right types of claims and whether we have collected sufficient persuasive evidence to support our claims. Purpose This paper examines limitations of the dominant practice in educational assessment of the 20th century, which focuses on relatively simple claims and often rely on a single piece of evidence. This paper considers future educational assessment in terms of principles of evidential reasoning, focusing the discussion on the changes to the claims our assessments must support, the types of evidence needed to support these claims, and the statistical tools available to evaluate our evidence vis-à-vis the claims. An expanded view of assessment is advanced in which assessments based on multiple evidence sources from contextually rich situated learning environments, including unconventional data regarding human competencies, improve our ability to make valid inferences and decisions about all education stakeholders. Conclusions For educational assessment to have the positive impact we intend on educational outcomes, future assessments must leverage technological and computational developments, as well as more contemporary models of human cognition, to build robust complex evidential arguments about the critical competencies that are likely to determine individuals’ success in 21st century society.


2019 ◽  
Vol 36 (2) ◽  
pp. 1083-1098
Author(s):  
Ching-Chang Wong ◽  
Hsuan-Ming Feng ◽  
Yu-Cheng Lai ◽  
Chia-Jun Yu

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4947
Author(s):  
Zhihua Wang ◽  
Fengduo Zhang ◽  
Tao Yao ◽  
Na Li ◽  
Xia Li ◽  
...  

Rotation detection is widely applied in industries. The current commonly used rotation detection system adopts a split structure, which requires stringent installation requirements and is difficult to miniaturize. This paper proposes a single-piece self-powered non-contact sensor with an interdigital sensitive layer to detect the rotation of objects. The electric field generated between a polyurethane (PU) film and a polytetrafluoroethylene (PTFE) film is utilized for perceiving the rotation. The surface of the PU film is subjected to wet etching with sulfuric acid to increase the surface area and charge density. Through finite element analysis and experimental testing, the effects of the areas of the sensitive films as well as the horizontal and vertical distances between them on the output voltage are analyzed. Tests are performed on adjustable-speed motors, human arms, and robotic arms. The results show that the sensor can detect the speed, the transient process of rotation, and the swing angle. The proposed rotation sensor has broad application prospects in the fields of mechanical automation, robotics, and Internet of Things (IoT).


Sign in / Sign up

Export Citation Format

Share Document