Design and analysis of a new flexure-based XY stage

2017 ◽  
Vol 28 (17) ◽  
pp. 2388-2402 ◽  
Author(s):  
Yiling Yang ◽  
Yanding Wei ◽  
Junqiang Lou ◽  
Fengran Xie

This article presents the design, modeling, and experimental testing of a novel piezo-driven XY stage with parallel, decoupled, and compact kinematic structure. The structural design of the stage is based on a hybrid compliant mechanism employing the right-circular double-rocker mechanism and the leaf-type parallelogram mechanism. The proposed XY stage is capable of producing a large workspace range, an excellent decoupled motion, and a suitable resonant frequency. By means of the pseudorigid-body-model method, the theoretical models of the XY stage are derived. Using the finite element analysis simulations, the optimal structural parameters are acquired, and the theoretical models are analyzed and validated. A prototype of the proposed stage was finally manufactured, and several experimental investigations were performed to validate its performances. The experimental results show that the XY stage has a large amplification ratio of 7.48 and a large workspace range of 150.3 µm × 147.9 µm. In addition, the parasitic motion along the y-axis ( x-axis) accounts for 0.94% (0.74%) of the x-axis ( y-axis) motion, which indicates that the stage possesses excellent decoupling characteristics.

2020 ◽  
Vol 12 (3) ◽  
pp. 168781402091147 ◽  
Author(s):  
Xiaodong Chen ◽  
Zilong Deng ◽  
Siya Hu ◽  
Xingjun Gao ◽  
Jinhai Gao

The microgripper based on the principle of lever amplification is easy to realize; however, the theoretical amplification factor is limited by the space size and the structure is not compact enough. The microgripper based on the triangular amplification principle has a compact structure and high amplification factor, but it is not conducive to miniaturization design. Considering compactness, parallel clamping, high magnification, and miniaturization design, a three-stage amplifier consisting of a semi-rhombic amplifier and lever amplifiers is designed. To begin with, the theoretical amplification ratio and the relationship between input variables and output variables are calculated by energy method. Furthermore, the finite element analysis software is used to optimize the structural parameters and analyze the performance of the model. Lastly, the experimental verification is carried out. At 150 V of driving voltage, the maximum output displacement was 530mm, and the actual magnification was 24 times. Microparts can be gripped in parallel and stably, which confirms the validity of the design.


Author(s):  
Giovanni Berselli ◽  
Rocco Vertechy ◽  
Gabriele Vassura ◽  
Vincenzo Parenti Castelli

The interest in actuators based on dielectric elastomer films as a promising technology in robotic and mechatronic applications is increasing. The overall actuator performances are influenced by the design of both the active film and the film supporting frame. This paper presents a single-acting actuator which is capable of supplying a constant force over a given range of motion. The actuator is obtained by coupling a rectangular film of silicone dielectric elastomer with a monolithic frame designed to suitably modify the force generated by the dielectric elastomer film. The frame is a fully compliant mechanism whose main structural parameters are calculated using a pseudo-rigid-body model and then verified by finite element analysis. Simulations show promising performance of the proposed actuator.


Author(s):  
Rafael Barreto Gutierrez ◽  
Martin Garcia ◽  
Joan McDuffie ◽  
Courtney Long ◽  
Ayse Tekes

Abstract This paper presents the design and development of a two fingered, monolithically designed compliant gripper mounted on a two-link robot. Rigid grippers traditionally designed by rigid links and joints might have low precision due to friction and backlash. The proposed gripper is designed as a single piece compliant mechanism consisted of several flexible links and actuated by wire through a servo motor. The gripper is attached to a two-link arm robot driven by three step motors. An additional servo motor can also rotate the base of the robot. While the robot is 3D printed using polylactic acid (PLA), the gripper is 3D printed in thermoplasticpolyurethane (TPU). Two force sensors are attached to the right and left ends of the gripper to measure grasping force. Experimental testing for grasping various objects having different sizes, shapes and weights is carried out to verify the robust performance of the proposed design. Through the experimentation, it’s been noted that the compliant gripper can successfully lift up objects at a maximum mass of 200 g and have a better performance if the objects’width is closer to the width of the gripper. The presented mechanism can be utilized as a service robot for elderly people to assist them pick and place objects or lift objects if equipped with necessary sensors.


Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Xiaodong Chen ◽  
Zilong Deng ◽  
Siya Hu ◽  
Jinhai Gao ◽  
Xingjun Gao

The existing symmetrical microgrippers have larger output displacements compared with the asymmetrical counterparts. However, the two jaws of a symmetrical microgripper are less unlikely to offer the same forces on the two sides of a grasped micro-object due to the manufacture and assembly errors. Therefore, this paper proposes a new asymmetric microgripper to obtain stable output force of the gripper. Compared with symmetrical microgrippers, asymmetrical microgrippers usually have smaller output displacements. In order to increase the output displacement, a compliant mechanism with four stage amplification is employed to design the asymmetric microgripper. Consequently, the proposed asymmetrical microgripper possesses the advantages of both the stable output force of the gripper and large displacement amplification. To begin with, the mechanical model of the microgripper is established in this paper. The relationship between the driving force and the output displacement of the microgripper is then derived, followed by the static characteristics’ analysis of the microgripper. Furthermore, finite element analysis (FEA) of the microgripper is also performed, and the mechanical structure of the microgripper is optimized based on the FEA simulations. Lastly, experimental tests are carried out, with a 5.28% difference from the FEA results and an 8.8% difference from the theoretical results. The results from theoretical calculation, FEA simulations, and experimental tests verify that the displacement amplification ratio and the maximum gripping displacement of the microgripper are up to 31.6 and 632 μm, respectively.


2019 ◽  
Vol 10 (1) ◽  
pp. 299-307
Author(s):  
Jinyin Li ◽  
Peng Yan ◽  
Jianming Li

Abstract. This paper presents an improved modeling method for bridge-type mechanism by taking the input displacement loss into consideration, and establishes an amplification ratio model of bridge-type mechanism according to compliance matrix method and elastic beam theory. Moreover, the amplification ratio of the designed bridge-type nano-positioner is obtained by taking the guiding mechanism as the external load of bridge-type mechanism. Comparing with existing methods, the proposed model is more accurate, which is further verified by finite element analysis(FEA) and experimental test. The consistency of the results obtained from theoretical model, FEA and experimental testing indicates that the proposed model can accurately predict the amplification characteristics of nano-positioners, which helps the analysis and design of bridge-type nano-positioners in practical applications.


Author(s):  
Haiyang Li ◽  
Guangbo Hao

This paper introduces a compliant mechanism reconfiguration approach that can be used to minimize the parasitic motions of a compliant mechanism. This reconfiguration approach is based on the position spaces, identified by the screw theory, of independent compliant modules in a compliant mechanism system. The parasitic motions (rotations) of a compliant mechanism are first modelled associated with the variables representing any positions of the compliant modules in the position spaces. The optimal positions of the compliant modules are then obtained where the parasitic motions are reduced to minimal values. A procedure of the compliant mechanism reconfiguration approach is summarized and demonstrated using a decoupled XYZ compliant parallel mechanism as an example. The analytical results show that the parasitic motions of the XYZ compliant parallel mechanism in the example can be dramatically reduced by the position/structure reconfiguration, which is also validated by finite element analysis. The position space of a compliant module contains a number of possible positions, thus a compliant mechanism can also be efficiently reconfigured to a variety of practical patterns such as the configuration with compact structure.


Author(s):  
Sicong Wan ◽  
Yulong Zhang ◽  
Qingsong Xu

This paper presents the design and development of a new flexure-based compliant XY micropositioning stage with large stroke. The parallel-kinematic XY compliant stage is designed based on the Roberts mechanisms. Pseudo-rigid-body model is developed to establish the quantitative models of the whole compliant mechanism. Finite element analysis is carried out to validate the performance of the XY stage. A prototype of the XY stage is developed for experimental investigations. Experimental results show that the stage can deliver a working range larger than 12 mm in each of the two working axes. Moreover, a feedback control using the proportional–integral–derivative control algorithm is implemented to demonstrate the positioning performance of the developed XY stage. The reported ideas can also be extended to the design and control of other micro-/nanopositioning systems.


2009 ◽  
Vol 1 (3) ◽  
Author(s):  
Giovanni Berselli ◽  
Rocco Vertechy ◽  
Gabriele Vassura ◽  
Vincenzo Parenti Castelli

The interest in actuators based on dielectric elastomer films as a promising technology in robotic and mechatronic applications is increasing. The overall actuator performances are influenced by the design of both the active film and the film supporting frame. This paper presents a single-acting actuator, which is capable of supplying a constant force over a given range of motion. The actuator is obtained by coupling a rectangular film of silicone dielectric elastomer with a monolithic frame designed to suitably modify the force generated by the dielectric elastomer film. The frame is a fully compliant mechanism whose main structural parameters are calculated using a pseudo-rigid-body model and then verified by finite element analysis. Simulations show promising performance of the proposed actuator.


2016 ◽  
Vol 7 (1) ◽  
pp. 119-126 ◽  
Author(s):  
Yilin Liu ◽  
Qingsong Xu

Abstract. This paper presents the mechanical design, analysis, fabrication, and testing procedures of a new large-range microgripper which is based on a flexible hinge structure. The uniqueness of the gripper is that the gripper arms not only provide large gripping range but also deliver approximately rectilinear movement as the displacement in nonworking direction is extremely small. The large gripping range is enabled by a mechanism design based on dual-stage flexure amplifier to magnify the stroke of piezoelectric actuator. The first-stage amplifier is a modified version of the Scott Russell (SR) mechanism and the second-stage amplifier contains a parallel mechanism. The displacement amplification ratio of the modified SR mechanism in the gripper has been enlarged to 3.56 times of the conventional design. Analytical static models of the gripper mechanism are developed and validated through finite-element analysis (FEA) simulation. Results show that the gripping range is over 720 µm with a resonant frequency of 70.7 Hz and negligible displacement in nonworking direction. The total amplification ratio of the input displacement is 16.13. Moreover, a prototype of the gripper is developed by using aluminium 7075 for experimental testing. Experimental results validate the analytical model and FEA simulation results. The proposed microgripper can be employed in various microassembly applications such as pick-and-place of optical fibre.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4491 ◽  
Author(s):  
Muhammad Shakeel Afzal ◽  
Hayeong Shim ◽  
Yongrae Roh

This study investigates the electroacoustic behavior of a piezoelectric multilayered structure for ultrasonic sensors using the equivalent circuit method (ECM). We first derived the vertical deflection of the multilayered structure as a function of pressure and voltage using equilibrium equations of the structure. The deflection derived in this work is novel in that it includes the effect of piezoelectricity as well as the external pressure on the radiating surface. Subsequently, the circuit parameters were derived from the vertical deflection. The acoustic characteristics of the structure were then analyzed using the electro-acoustical model of an ultrasonic sensor for in-air application. Using the equivalent circuit, we analyzed the effects of various structural parameters on the acoustic properties of the structure such as resonance frequency, radiated sound pressure, and beam pattern. The validity of the ECM was verified initially by comparing the results with those from the finite element analysis (FEA) of the same structure. Furthermore, experimental testing of an actual ultrasonic sensor was carried out to verify the efficacy of the ECM. The ECM presented in this study can estimate the performance characteristics of a piezoelectric multilayered structure with high rapidity and efficiency.


Sign in / Sign up

Export Citation Format

Share Document