What is the Best Solution to Improve Thermal Performance of Storage Tanks With Immersed Heat Exchangers: Baffles or a Divided Tank?

Author(s):  
Aaron D. Wade ◽  
Jane H. Davidson ◽  
Julia F. Haltiwanger

Prior studies of indirect water storage tanks that employ an immersed heat exchanger to discharge the stored energy have identified two potential methods of improving the rate of energy extraction: 1) an internal baffle to increase the velocity across the heat exchanger, and 2) a divided storage compartment to achieve thermal stratification. Thermal performance of these two options is compared to that of a conventional cylindrical tank during transient discharge. Each tank has a storage volume of 350 liters and a 10 m long, 0.3 m2 coiled tubular heat exchanger. For the specific configurations evaluated, the baffled heat exchanger provides the highest energy delivery rates and heat exchanger outlet temperatures. An analytic model shows the advantage of the divided storage depends on the NTU of the immersed heat exchanger. The heat exchanger employed in the present study is too small to realize the potential benefit of a divided storage. Both options, if used in the appropriate system, can improve thermal performance as measured by the rate and quality of delivered energy. The baffle is most appropriate when storage-side natural convection is the largest thermal resistance of the heat exchanger. The divided tank is useful when the NTU of the heat exchanger exceeds three.

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Aaron D. Wade ◽  
Jane H. Davidson ◽  
Julia F. Haltiwanger

Prior studies of indirect water storage tanks that employ an immersed heat exchanger to discharge the stored energy identified two potential methods of improving the rate of energy extraction: (1) an internal baffle to increase the velocity across the heat exchanger and (2) a divided storage compartment to achieve thermal stratification. The relative benefits of the two options are compared and recommendations for implementation are provided based in part on measurements in a 350 l tank with a 10 m long, 0.3 m2 coiled tubular heat exchanger.


2015 ◽  
Vol 76 (11) ◽  
Author(s):  
Muhammad Nuriyadi ◽  
Sumeru Sumeru ◽  
Henry Nasution

This study presents the effect of liquid-suction heat exchangers (LSHX) sub-cooler in a freezer. The LSHX sub-cooler is a method to increase the cooling capacity of the evaporator by lowering temperature at the condenser outlet. The decrease in temperature of the condenser outlet will cause a decrease in the quality refrigerant entering the evaporator. The lower the quality of the refrigerant entering the evaporator, the higher the cooling capacity produced by the evaporator. The LSHX sub-cooler utilizes a heat exchanger to transfer heat from the outlet of the condenser (liquid line) to the suction of the compressor. In the present study, three different LSHX sub-coolers in the freezer with cabin temperature settings of 0, -10 and -20oC were investigated. The results showed that the lowest and the highest of effectiveness of the heat exchanger were 0.28 and 0.58, respectively. The experimental results also showed that EER reduction is occurred at the cabin temperature setting of 0oC and -10oC, whereas the EER improvements were always occurred at the cabin temperature settings of -20oC.


Heat exchangers are prominent industrial applications where engineering science of heat transfer and Mass transfer occurs. It is a contrivance where transfer of energy occurs to get output in the form of energy transfer. This paper aims at finding a solution to improve the thermal performance in a heat exchanger by using passive method techniques. This experimental and numerical analysis deals with finding the temperature outlets of cold and hot fluid for different mass flow rates and also pressure drop in the tube and the annular side by adding an elliptical leaf strip in the pipe at various angles. The single elliptical leaf used in experiment has major to minor axes ratios as 2:1 and distance of 50 mm between two leaves are arranged at different angular orientations from 0 0 to 1800 with 100 intervals. Since it’s not possible to find the heat transfer rates and pressure drops at every orientation of elliptical leaf so a generalized regression neural network (GRNN) prediction tool is used to get outputs with given inputs to avoid experimentation. GRNN is a statistical method of determining the relationship between dependent and independent variables. The values obtained from experimentation and GRNN nearly had precise values to each other. This analysis is a small step in regard with encomiastic approach for enhancement in performance of heat exchangers


2018 ◽  
Vol 192 ◽  
pp. 02062
Author(s):  
Pattarapan Tongyote ◽  
Pongjet Promvonge ◽  
Nattawoot Depaiwa ◽  
Withada Jedsadaratanachai

The paper presents an experimental heat transfer enhancement study in a tubular heat exchanger fitted with delta-winglets. The experimental work was conducted by varying the airflow rate in the test tube having a constant wall heat-flux for turbulent regime, Reynolds number (Re) from 5200 to 23,000. Effects of three pitch ratios (PR=P/D=1.5, 2.0 and 3.0) and two attack angles, α = 45° and 60°, of the winglets at a single blockage ratio (BR=b/D = 0.15) on thermal characteristics are examined. The experimental results show that the winglet-inserted tube yields, respectively, the heat transfer, friction factor and thermal performance in the form of TEF around 1.99–4.08, 4.9–14.3 times higher than the plain tube and 0.85–1.85, depending on the operating condition.


2021 ◽  
pp. 3-19
Author(s):  
Dusan P. Sekulic

Abstract Heat exchangers are devices used to transfer thermal energy between two or more fluids, between a solid surface and a fluid, or between a solid particulate and a fluid at different temperatures. This article first addresses the causes of failures in heat exchangers. It then provides a description of heat-transfer surface area, discussing the design of the tubular heat exchanger. Next, the article discusses the processes involved in the examination of failed parts. Finally, it describes the most important types of corrosion, including uniform, galvanic, pitting, stress, and erosion corrosion.


2012 ◽  
Vol 562-564 ◽  
pp. 1776-1779
Author(s):  
Yue Han ◽  
Heng Zhi Cai ◽  
Ya Jun Zhang ◽  
Da Ming Wu ◽  
Xin Liang Wang

The heat exchanger is widely used in energy engineering, chemical engineering etc. And with development of the MEMS (Micro Electro Mechanical Systems), many researchers are interested in the micro heat exchanger. In this paper, the micro plastic heat exchangers are manufactured by modified PPS. A heat exchanger with polypropylene (PP) is also made for comparison. Simulation and experiment are carried out to determine the thermal performance of the micro plastic heat exchangers. The experimental results are compared with that of simulation. The results show the performance of the micro plastic heat exchanger is very close to that of metal heat exchanger with the same dimension.


Author(s):  
Kiran Lankalapalli ◽  
Ahmed ElSawy ◽  
Stephen Idem

A steady state sensible performance analysis of multi-pass cross-flow finned-tube heat exchangers is reported. The investigation considers various flow circuiting, such as counter cross-flow, parallel cross-flow, and cross-flow where the tube-side flow is in parallel. A previously developed matrix approach is used to evaluate the heat exchanger performance in each tube pass. The equations required to model the thermal performance of these configurations are presented, and the thermal performance is compared for each type of flow circuiting. Thereafter a parametric study on cross-flow heat exchanger performance is performed by varying physically significant parameters such as number of transfer units (NTU) and capacity rate ratios, and the graphical results for each type of flow circuiting are presented both for both two-pass and three-pass arrangements. A consistent criterion is proposed for each case, wherein increasing the NTU beyond a certain threshold value does not significantly improve heat exchanger thermal performance.


Author(s):  
Kyeong Mo Hwang ◽  
Tae Eun Jin

As the operating time of heat exchangers progresses, fouling caused by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of Korean nuclear power plants have been analyzed in terms of heat transfer rate and overall heat transfer coefficient as a means of heat exchanger management. Except for fouling resulting from the operation of heat exchangers, all the tubes of heat exchangers have been replaced when the number of plugged tubes exceeded the plugging criteria based on design performance sheet. This paper describes a plugging margin evaluation method taking into account the fouling of shell-and-tube heat exchangers. The method can evaluate thermal performance, estimate future fouling variation, and consider current fouling level in the calculation of plugging margin. To identify the effectiveness of the developed method, fouling and plugging margin evaluations were performed at a component cooling heat exchanger in a Korean nuclear power plant.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2804
Author(s):  
Sławomir Rabczak ◽  
Paweł Kut

Ground heat exchangers supplement ventilation systems and provide notable power gains by heating ventilated air during winter and cooling it in summer. Additionally, they prevent recuperator exchangers from freezing. In atmospheric air, there are many types of contaminants and microorganisms that significantly affect the quality of ventilated air. The air that flows through the system of pipes of the heat exchanger may also become contaminated. In order to remove contamination from ventilated air, ultraviolet radiation may be used. This article presents a concept of using a UV-C (ultraviolet with a wavelength of 200–280 nm) lamp in the air duct in front of the air handling unit connected to the ground heat exchanger. The UV-C lamp, apart from clearing the air, may also decrease operational costs thanks to eliminating contamination that forms bacterial jelly on heat exchanger elements.


Sign in / Sign up

Export Citation Format

Share Document