A Model for a Geothermal Well in a Hydraulic Groundwater Flow for Ground Source Heat Pump Systems

Author(s):  
Kevin D. Woods ◽  
Alfonso Ortega

Heat pumps are mechanical systems that provide heating to a space in the winter, and cooling in the summer. They are increasingly popular because the same system provides both cooling modes, depending on the direction of the cycle upon which they operate. For proper operation, the heat pump must be connected to a constant temperature thermal reservoir which in traditional systems is the ambient air. In ground source heat pumps however, subterranean ground water is used as the thermal reservoir. To access the subterranean groundwater, “geothermal” wells are drilled into the formation. Water from the building heating or cooling system is circulated through the wells thereby promoting heat exchange between the coolant water and the subterranean formation. The potential for higher efficiency heating and cooling has increased the utilization of ground source heating ventilating and air conditioning systems. In addition, their compatibility with a naturally occurring and stable thermal reservoir has increased their use in the design of sustainable or green buildings and man-made environments. Groundwater flow affects the temperature response of thermal wells due to advection of heat by physical movement of groundwater through the aquifer. Research on this subject is scarce in the geothermal literature. This paper presents the derivation of an analytical solution for thermal dispersion by conduction and advection from hydraulic groundwater flow for a “geothermal” well. This analytical solution is validated against asymptotic analytical solutions. The traditional constant linear heat source solution is dependent on the ground formation thermal properties; the most dominant of which is the thermal conductivity. The results show that as hydraulic groundwater flow increases, the influence of the ground formation thermal conductivity on the temperature response of the well diminishes. The diminishing influence is evident in the Peclet number parameter; a comparison of thermal advection from hydraulic groundwater flow to thermal conduction by molecular diffusion.

Author(s):  
Kevin D. Woods ◽  
Alfonso Ortega ◽  
Albert Koenig

Heat pumps are mechanical systems that provide heating to a space in the winter, and cooling in the summer. They are increasingly popular because the same system provides both cooling modes, depending on the direction of the cycle upon which they operate. For proper operation, the heat pump must be connected to a constant temperature thermal reservoir which in traditional systems is the ambient air. In ground source heat pumps however, subterranean ground water is used as the thermal reservoir. To access the subterranean groundwater, “geothermal” wells are drilled into the formation. Water from the building heating or cooling system is circulated through the wells thereby promoting heat exchange between the coolant water and the subterranean formation. The potential for higher efficiency heating and cooling has increased the utilization of ground source HVAC systems. In addition, their compatibility with a naturally occurring and very stable thermal reservoir has increased their use in the design of sustainable or green buildings and man-made environments. This paper is concerned with the development of a mathematical model describing the thermal processes that occur in a circulating geothermal well as the water thermally interacts with the surrounding formation. First principles are utilized to develop a general single well model that is able to predict the heating or cooling of a well with time. The single well model is then utilized to build a simulation for an infinite line of adjacent wells that thermally interact with each other over time. The behavior of a single isolated well and a line of evenly spaced wells is discussed and compared with recent experimental data for circulation in an isolated well.


Author(s):  
Ayako Funabiki ◽  
Masahito Oguma ◽  
Taisei Yabuki ◽  
Takao Kakizaki

Heat advection by groundwater flow is known to improve the performance of ground heat exchangers (GHEs), but the effect of groundwater advection on performance is not yet fully understood. This study examined how parameters related to groundwater flow, such as aquifer thickness, porosity, lithology, and groundwater flow velocity, affect the performance of a borehole GHE. Under the thin-aquifer condition (10 m, or 10% of the entire GHE length in this study), groundwater flow velocity had the greatest effect on heat flux. With a groundwater flow velocity of at least 10−4 m/s through a low-porosity aquifer filled with gravel with high thermal conductivity, the heat flux of a GHE was as much as 60% higher than that of a non-aquifer GHE. If the aquifer is as thick as 50 m (50% of the entire GHE length), the high thermal conductivity of gravel doubled the heat flux of the GHE with a groundwater flow velocity of at least 10−5 m/s. Thus, not only groundwater flow velocity, but also aquifer thickness and thermal conductivity were important factors. However, groundwater seldom flows at such high velocities, and porosity, gravel size, and aquifer thickness vary regionally. Thus, in the design of ground source heat pump systems, it is not appropriate to assume a large groundwater effect.


Author(s):  
Ayako Funabiki ◽  
Masahito Oguma

Heat advection by groundwater flow is known to improve the performance of ground heat exchangers (GHEs), but the effect of groundwater advection on performance is not yet fully understood. This numerical study examined how parameters related to groundwater flow, such as aquifer thickness, porosity, lithology, and groundwater flow velocity, affected the performance of a borehole GHE. Under a thin-aquifer condition (10 m, or 10% of the entire GHE length in this study), groundwater flow velocity had the greatest effect on heat flux. At a groundwater flow velocity of at least 10−4 m/s through a low-porosity aquifer filled with granite gravel with high thermal conductivity, the heat flux of a GHE was as much as 60% higher than that of a GHE in a setting without an aquifer. If the aquifer was as thick as 50 m, the high thermal conductivity of granite gravel doubled the heat flux of the GHE at a groundwater flow velocity of at least 10−5 m/s. Thus, not only groundwater flow velocity but also aquifer thickness and thermal conductivity were important factors. However, groundwater seldom flows at such high velocities, and porosity, gravel size and composition, and aquifer thickness vary regionally. Thus, in the design of ground source heat pump systems, it is not appropriate to assume a large groundwater effect.


2021 ◽  
Author(s):  
Arif Widiatmojo ◽  
Youhei Uchida ◽  
Isao Takashima

In recent decades, the fast-growing economies of Southeast Asian countries have increased the regional energy demand per capita. The statistic indicates Southeast Asian electricity consumption grows for almost 6% annually, with space cooling becoming the fastest-growing share of electricity use. The ground source heat pump technology could be one of the solutions to improve energy efficiency. However, currently, there are limited data on how a ground source heat pump could perform in such a climate. The thermal response test is widely used to evaluate the apparent thermal conductivity of the soil surrounding the ground heat exchanger. In common practice, the apparent thermal conductivity can be calculated from the test result using an analytical solution of the infinite line source method. The main limitation of this method is the negligence of the physical effect of convective heat transfer due to groundwater flow. While convection and dispersion of heat are two distinctive phenomena, failure to account for both effects separately could lead to an error, especially in high groundwater flow. This chapter discusses the numerical evaluation of thermal response test results in Bangkok, Thailand, and Hanoi, Vietnam. We applied a moving infinite line source analytical model to evaluate the value of thermal conductivity and groundwater flow velocity. While determining the ground thermal properties in a high accuracy is difficult, the moving infinite line source method fulfills the limitation of the infinite line source method. Further, we evaluated the five-year performance of the ground source heat pump system coupled with two vertical ground heat exchangers in Bangkok and Hanoi. The results suggest the importance of groundwater flow to enhance the thermal performance of the system.


2020 ◽  
Vol 3 (S1) ◽  
Author(s):  
Andreas Weigert ◽  
Konstantin Hopf ◽  
Nicolai Weinig ◽  
Thorsten Staake

Abstract Heat pumps embody solutions that heat or cool buildings effectively and sustainably, with zero emissions at the place of installation. As they pose significant load on the power grid, knowledge on their existence is crucial for grid operators, e.g., to forecast load and to plan grid operation. Further details, like the thermal reservoir (ground or air source) or the age of a heat pump installation renders energy-related services possible that utility companies can offer in the future (e.g., detecting wrongly calibrated installations, household energy efficiency checks). This study investigates the prediction of heat pump installations, their thermal reservoir and age. For this, we obtained a dataset with 397 households in Switzerland, all equipped with smart meters, collected ground truth data on installed heat pumps and enriched this data with weather data and geographical information. Our investigation replicates the state of the art in the area of heat pump detection and goes beyond it, as we obtain three major findings: First, machine learning can detect the existence of heat pumps with an AUC performance metric of 0.82, their heat reservoir with an AUC of 0.86, and their age with an AUC of 0.73. Second, heat pump existence can be better detected using data during the heating period than during summer. Third the number of training samples to detect the existence of heat pumps must not be necessarily large in terms of the number of training instances and observation period.


Author(s):  
Mohammad Omar Temori ◽  
František Vranay

In this work, a mini review of heat pumps is presented. The work is intended to introduce a technology that can be used to income energy from the natural environment and thus reduce electricity consumption for heating and cooling. A heat pump is a mechanical device that transfers heat from one environmental compartment to another, typically against a temperature gradient (i.e. from cool to hot). In order to do this, an energy input is required: this may be mechanical, electrical or thermal energy. In most modern heat pumps, electrical energy powers a compressor, which drives a compression - expansion cycle of refrigerant fluid between two heat exchanges: a cold evaporator and a warm condenser. The efficiency or coefficient of performance (COP), of a heat pump is defined as the thermal output divided by the primary energy (electricity) input. The COP decreases as the temperature difference between the cool heat source and the warm heat sink increases. An efficient ground source heat pump (GSHP) may achieve a COP of around 4. Heat pumps are ideal for exploiting low-temperature environmental heat sources: the air, surface waters or the ground. They can deliver significant environmental (CO2) and cost savings.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1274 ◽  
Author(s):  
Arif Widiatmojo ◽  
Sasimook Chokchai ◽  
Isao Takashima ◽  
Yohei Uchida ◽  
Kasumi Yasukawa ◽  
...  

The cooling of spaces in tropical regions, such as Southeast Asia, consumes a lot of energy. Additionally, rapid population and economic growth are resulting in an increasing demand for space cooling. The ground-source heat pump has been proven a reliable, cost-effective, safe, and environmentally-friendly alternative for cooling and heating spaces in various countries. In tropical countries, the presumption that the ground-source heat pump may not provide better thermal performance than the normal air-source heat pump arises because the difference between ground and atmospheric temperatures is essentially low. This paper reports the potential use of a ground-source heat pump with horizontal heat exchangers in a tropical country—Thailand. Daily operational data of two ground-source heat pumps and an air-source heat pump during a two-month operation are analyzed and compared. Life cycle cost analysis and CO2 emission estimation are adopted to evaluate the economic value of ground-source heat pump investment and potential CO2 reduction through the use of ground-source heat pumps, in comparison with the case for air-source heat pumps. It was found that the ground-source heat pumps consume 17.1% and 18.4% less electricity than the air-source heat pump during this period. Local production of heat pumps and heat exchangers, as well as rapid regional economic growth, can be positive factors for future ground-source heat pump application, not only in Thailand but also southeast Asian countries.


2019 ◽  
Vol 111 ◽  
pp. 01070
Author(s):  
Gheorghe Ilisei ◽  
Tiberiu Catalina ◽  
Robert Gavriliuc

Having in sight the need for a strong reduction in CO2 emissions and the fluctuation of the price of fossil fuels, the ground source resources alongside with the ground source heat pumps are becoming more and more widespread for meeting the heating/cooling demand of several types of buildings. This article targets to develop the thermal modelling of borehole heat storage systems. Trying to emphasize some certain advantages of a GSHP (ground source heat pump) with vertical boreholes, a case study analysing a residential solar passive house is presented. The numerical results are produced using different modelling software like DesignBuilder, EED (Earth Energy Designer) and a sizing method for the length of the boreholes (ASHRAE method). The idea of sizing the length of boreholes (main design parameter and good index in estimating the system’s cost) using two different methods shows the reliability of this modelling tool. The study shows that borehole’s length of a GSHP system can trigger a difference in electricity consumption up to 22%. Moreover, this sensitivity analysis aims to prove that the design of the whole system can be done beforehand just using modeling tools, without performing tests in-situ.


2020 ◽  
Vol 103 (2) ◽  
pp. 003685042092168
Author(s):  
Weisong Zhou ◽  
Peng Pei ◽  
Ruiyong Mao ◽  
Haibin Qian ◽  
Yanbing Hu ◽  
...  

In order to take advantage of different forms of heat pumps and to mitigate thermal imbalance underground caused by long-term operation of ground source heat pumps, hybrid ground source heat pump systems have received an increasing attention. In this research, based on the fact that abundant groundwater resources are commonly available in karst regions, a new strategy is introduced for selecting and determining hybrid ground source heat pump capacity. Five scenarios of hybrid ground source heat pump system coupling groundwater source heat pumps with other supplementary heat pumps are proposed in this article to provide appropriate options to eliminate heat buildup under different hydrogeologic conditions. Methodologies for sizing and selection are established. Then, a case study of techno-economic analysis was performed for a project in the karst region in South China. The results showed that these scenarios can effectively mitigate heat buildup, and under the hydrogeologic condition in the case study. Compared to the solo ground-coupled heat pump solution, the optimal solution (Solution 4 in this study) can reduce the annual costs by 16.10% and reduce the capital investment by 60%. Methodologies developed in this study are beneficial for selecting appropriate approaches to mitigate heat buildup and enhance competitiveness of ground source heat pumps.


Sign in / Sign up

Export Citation Format

Share Document