Design and Commissioning of an Experimental Set-Up to Evaluate the Performance of a Solar Absorption Chiller With Thermal Storage

Author(s):  
Christopher Baldwin ◽  
Cynthia A. Cruickshank ◽  
Daniel Bowie

As the demand for cooling increases in Canada, it creates a greater energy demand on the utility grid by placing peak loads during the summer months. As a result, air conditioning in the residential sector is responsible for a disproportionately large and increasing amount of CO2 emissions in Canada. One potential solution is the use of solar thermally driven absorption chillers, however before their widespread use in Canada is possible, extensive testing and optimization of the systems must be conducted to determine their feasibility in the Canadian climate. This paper discusses a full scale experimental test rig that has been recently constructed and commissioned to experimentally evaluate the performance of a commercially available solar absorption chiller with integrated thermal storage. The complete system is described, including the system’s test capabilities, the instrumentation installed, the control system developed, and the calibration and uncertainty analysis completed on each individual sensor and the system as a whole. Additionally, the paper examines the charge cycle of the solar absorption chiller being studied, and compares the results to simulation results obtained from a TRNSYS model of the test apparatus.

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 48
Author(s):  
Alvaro A. S. Lima ◽  
Gustavo de N. P. Leite ◽  
Alvaro A. V. Ochoa ◽  
Carlos A. C. dos Santos ◽  
José A. P. da Costa ◽  
...  

The interest in employing absorption refrigeration systems is usually related to electricity’s precariousness since these systems generally use thermal rejects for their activation. The application of these systems is closely linked to the concept of energy polygeneration, in which the energy demand to operate them is reduced, which represents their main advantage over the conventional vapor compression system. Currently, the solution pairs used in commercial absorption chillers are lithium bromide/water and ammonia/water. The latter pair has been used in air conditioning and industrial processes due to the ammonia operation’s low temperature. Few review papers on absorption chillers have been published, discussing the use of solar energy as the input source of the systems, the evolution of the absorption refrigeration cycles over the last decades, and promising alternatives to increase the performance of absorption refrigeration systems. There is a lack of consistent studies about designing requirements for absorption chillers, so an updated review covering recent advances and suggested solutions to improve the use and operation of those absorption refrigeration systems using different working fluids is relevant. Hence, this presents a review of the state-of-the-art of ammonia/absorbent based absorption refrigeration systems, considering the most relevant studies, describing the development of this equipment over the years. The most relevant studies in the open literature were collected to describe this equipment’s development over the years, including thermodynamic properties, commercial manufacturers, experimental and numerical studies, and the prototypes designed and tested in this area. The manuscript focuses on reviewing studies in absorption refrigeration systems that use ammonia and absorbents, such as water, lithium nitrate, and lithium nitrate plus water. As a horizon to the future, the uses of absorption systems should be rising due to the increasing values of the electricity, and the environmental impact of the synthetic refrigerant fluids used in mechanical refrigeration equipment. In this context, the idea for a new configuration absorption chiller is to be more efficient, pollutant free to the environment, activated by a heat substantiable source, such as solar, with low cost and compactness structure to attend the thermal needs (comfort thermal) for residences, private and public buildings, and even the industrial and health building sector (thermal processes). To conclude, future recommendations are presented to deal with the improvement of the refrigeration absorption chiller by using solar energy, alternative fluids, multiple-effects, and advanced and hybrid configurations to reach the best absorption chiller to attend to the thermal needs of the residential and industrial sector around the world.


1955 ◽  
Vol 59 (537) ◽  
pp. 587-603
Author(s):  
R. H. Woodall

The main task of the aircraft accessory designer is to provide fully developed and type-tested equipment to meet the needs of the Aircraft Industry at the time when a new aircraft is at a stage in construction where accessories are to be fitted.But he must do more than this, particularly with equipment for multi-engined aircraft. He must endeavour to set up and test a complete aircraft ancillary power system. This is particularly important for the electrical system, where two or more generators have to operate in parallel, successfully sharing the load on the system and providing over-voltage and other protection in such a manner that failure of the complete system does not result from failure of one engine, generator or its attendant equipment.


Author(s):  
Daniel Bowie ◽  
Cynthia A. Cruickshank

Energy use for space cooling has increased by 156% from 1990 to 2010 in the Canadian residential sector. In many parts of the country, the increasing use of electrically driven air-conditioners has begun to shift the peak load on the electricity grid from the coldest days of winter to the hottest days of summer. Many of Canada’s major electric utilities providers rely on fossil fuels to generate the additional capacity needed to meet the peak demand, resulting in significant greenhouse gas emissions. Solar-driven sorption chillers remain one of the possible solutions for shaving the peak loads experienced by the electricity grid. This paper presents a review of the recent developments in the research of adsorption and absorption chillers, as well as a comparison of the two technologies based on the latest published experimental results found in the literature. Adsorption chillers continue to evolve in their design, including the use of new consolidated and composite adsorbents, the integration of coated adsorbers into internal heat exchangers, and newly developed advanced cycles for heat and mass recovery. While the physical design of adsorption chillers continues to be advanced, the development of absorption chillers for solar cooling applications has largely been focused on optimizing the system as a whole through improved control strategies and the implementation of newly developed high performance solar collectors. Finally, the paper aims to assess the current state of development of solar-driven sorption chillers to provide insight into their applicability in the Canadian residential sector, as well as the remaining challenges facing this technology.


2001 ◽  
Author(s):  
E. D. Rogdakis ◽  
V. D. Papaefthimiou

Abstract It is a general trend today, the old centrifugal machines to be replaced by new absorption machines. The mass flow rate of the cooling water in the centrifugal machines is normally 30% less than that in the two-stage absorption chiller for the same refrigerating capacity. Some absorption chillers manufacturers have updated and improved the double-effect technology increasing the cooling water temperature difference from the typical value of 5.5°C to 7.4°C and reducing the cooling water flow rate by about 30%. Using such a modern double effect absorption unit to replace a centrifugal chiller the same cooling water circuit can be used and the total cost of the retrofit is minimized. In this case a new flow pattern of the cooling tower is developed, and in this paper the design of a new tower fill is predicted taking into account the new factors characterizing the operating conditions and the required performance of the tower. As an example, the operational curves of a modified cooling tower (1500 KW cooling power) used by a 240 RT double-effect absorption chiller are presented.


2021 ◽  
Vol 16 (1) ◽  
pp. 032-041
Author(s):  
Pradeep N ◽  
Somesh Subramanian S

Thermal energy storage through phase change material has been used for wide applications in the field of air conditioning and refrigeration. The specific use of this thermal storage has been for energy storage during low demand and release of this energy during peak loads with potential to provide energy savings due to this. The principle of latent heat storage using phase change materials (PCMs) can be incorporated into a thermal storage system suitable for using deep freezers. The evaporator is covered with another box which has storage capacity or passage through phase change material. The results revealed that the performance is increased from 3.2 to 3.5 by using PCM.


2021 ◽  
pp. 58-58
Author(s):  
Farshad Panahizadeh ◽  
Mahdi Hamzehei ◽  
Mahmood Farzaneh-Gord ◽  
Villa Ochoa

Absorption chillers are one of the most used equipment in industrial, commercial, and domestic applications. For the places where high cooling is required, they are utilized in a network to perform the cooling demand. The main objective of the current study was to find the optimum operating conditions of a network of steam absorption chillers according to energy and economic viewpoints. Firstly, energy and economic analysis and modeling of the absorption chiller network were carried out to have a deep understanding of the network and investigate the effects of operating conditions. Finally, the particle swarm optimization search algorithm was employed to find an optimum levelized total costs of the plant. The absorption chiller network plant of the Marun Petrochemical Complex in Iran was selected as a case study. To verify the simulation results, the outputs of energy modeling were compared with the measured values. The comparison with experimental results indicated that the developed model could predict the working condition of the absorption chiller network with high accuracy. The economic analysis results revealed that the levelized total costs of the plant is 1730 $/kW and the payback period is three years. The optimization findings indicated that working at optimal conditions reduces the levelized total costs of the plant by 8.5%, compared to the design condition.


2017 ◽  
Vol 12 (1) ◽  
pp. 147-158 ◽  
Author(s):  
Petrit Ahmeti ◽  
Ilir Dalipi ◽  
Agon Basha ◽  
István Kistelegdi

Author(s):  
Christoph Trinkl ◽  
Wilfried Zo¨rner ◽  
Vic Hanby

Both solar and heat pump heating systems are innovative technologies for sustaining ecological heat generation. They are gaining more and more importance due to the accelerating pace of climate change and the rising cost of limited fossil resources. Against this background, a heating system combining solar thermal collectors, heat pump, stratified thermal storage and water/ice latent heat storage has been investigated. The major advantages of the proposed solar/heat pump heating system are considered to be its flexible application (suitable for new and existing buildings because of acceptable space demand) as well as the improvement of solar fraction (extended solar collector utilisation time, enhanced collector efficiency), i.e. the reduction of electric energy demand for the heat pump. In order to investigate and optimise the heating system, a dynamic system simulation model was developed. On this basis, a fundamental control strategy was derived for the overall coordination of the heating system with particular regard to the performance of the two storage tanks. In a simulation study, a fundamental investigation of the heating system configuration was carried out and optimisation derived for the system control as well as the selection of components and their dimensioning. The influence of different parameters on the system performance was identified, where the collector area and the latent heat storage volume were found to be the predominant parameters for system dimensioning. For a modern one-family house, a solar collector area of 30m2 and a latent heat store volume of 12.5m3 are proposed. In this configuration, the heating system reaches a seasonal performance factor of 4.6, meaning that 78% of the building’s and users’ heat demand are delivered by solar energy. The results show that the solar/heat pump heating system can give an acceptable performance using up-to-date components in a state-of-the-art building.


Sign in / Sign up

Export Citation Format

Share Document