On the Design of Three Links Robot for Drawing Epicycloid and Hypocycloid Curves

Author(s):  
Meng-Hui Hsu ◽  
Zong-You Tsai ◽  
Long-Chang Hsieh ◽  
Jen-Yu Liu

An epicycloid or hypocycloid mechanism is capable of drawing an exact epicycloid or hypocycloid curve. Similar mechanism designs can be found abundantly in industrial machines or educational equipment. Currently, the major type of epicycloid or hypocycloid configurations is planetary gear trains, which contain a binary link that has one fixed and one moving pivot, and a singular link adjacent to the moving pivot. The main feature of the configurations is that any point on the singular link may describe an epicycloid or hypocycloid curve when the binary link is rotated. Presently, the major types of configurations of epicycloid (hypocycloid) mechanisms have one degree of freedom. However, at present, as far as the authors are concerned, there appears to be no approach in designing epicycloid (hypocycloid) mechanisms with two degrees of freedom. Thus, the main aim of this paper is to develop a new design method in designing new configurations of epicycloid (hypocycloid) mechanisms. This paper analyses the characteristics of the topological structures of existing planetary gear train type epicycloid (hypocycloid) mechanisms with one degree of freedom. The equation of motion and kinematical model of the mechanism was derived and appropriate design constraints and criteria were implemented. Subsequently, using the design constraints and criteria, this work designs a new and simple epicycloid (hypocycloid) mechanism that is a three-links robot and has two degrees of freedom. We can easily control the angular velocities of the binary and singular links to satisfy the criterion to draw an epicycloid (hypocycloid) curve. Additionally, an epicycloid (hypocycloid) path of a point on the three links robot is simulated by computer drawing to prove the feasibility of proposed theory. Finally, a prototype of three links robot for drawing an epicycloid (hypocycloid) path is done well. We know the methods of design and manufacture of the proposed epicycloid or hypocycloid mechanism in linkage is easily done.

1994 ◽  
Vol 116 (2) ◽  
pp. 565-570 ◽  
Author(s):  
Hong-Sen Yan ◽  
Long-Chang Hsieh

An automotive gear differential is a joint-fractionated planetary gear train with two degrees-of-freedom. We summarize the characteristics of planetary gear trains and the design constraints of noncoupled automotive gear differentials to synthesize their corresponding kinematic graphs. Based on these graphs and the proposed respecializing process, we generate the atlas of design concepts for automotive gear differentials with any types of gear pairs. As a result, there are 4, 25, and 156 design concepts for five-, six-, and seven-bar automotive gear differentials, respectively.


Author(s):  
Fengxia Lu ◽  
Rupeng Zhu ◽  
Haofei Wang ◽  
Heyun Bao ◽  
Miaomiao Li

A new nonlinear dynamics model of the double helical planetary gear train with 44 degrees of freedom is developed, and the coupling effects of the sliding friction, time-varying meshing stiffness, gear backlashes, axial stagger as well as gear mesh errors, are taken into consideration. The solution of the differential governing equation of motion is solved by variable step-size Runge-Kutta numerical integration method. The influence of tooth friction on the periodic vibration and nonlinear vibration are investigated. The results show that tooth friction makes the system motion become stable by the effects of the periodic attractor under the specific meshing frequency and leads to the frequency delay for the bifurcation behavior and jump phenomenon in the system.


2002 ◽  
Vol 124 (4) ◽  
pp. 662-675 ◽  
Author(s):  
V. V. N. R. Prasad Raju Pathapati ◽  
A. C. Rao

The most important step in the structural synthesis of planetary gear trains (PGTs) requires the identification of isomorphism (rotational as well as displacement) between the graphs which represent the kinematic structure of planetary gear train. Previously used methods for identifying graph isomorphism yielded incorrect results. Literature review in this area shows there is inconsistency in results from six link, one degree-of-freedom onwards. The purpose of this paper is to present an efficient methodology through the use of Loop concept and Hamming number concept to detect displacement and rotational isomorphism in PGTs in an unambiguous way. New invariants for rotational graphs and displacement graphs called geared chain hamming strings and geared chain loop hamming strings are developed respectively to identify rotational and displacement isomorphism. This paper also presents a procedure to redraw conventional graph representation that not only clarifies the kinematic structure of a PGT but also averts the problem of pseudo isomorphism. Finally a thorough analysis of existing methods is carried out using the proposed technique and the results in the category of six links one degree-of-freedom are established and an Atlas comprises of graph representations in conventional form as well as in new form is presented.


Author(s):  
Andrew E. Potts ◽  
Douglas A. Potts ◽  
Hayden Marcollo ◽  
Kanishka Jayasinghe

The prediction of Vortex-Induced Vibration (VIV) of cylinders under fluid flow conditions depends upon the eddy shedding frequency, conventionally described by the Strouhal Number. The most commonly cited relationship between Strouhal Number and Reynolds Number for circular cylinders was developed by Lienhard [1], whereby the Strouhal Number exhibits a consistent narrow band of about 0.2 (conventional across the sub-critical Re range), with a pronounced hump peaking at about 0.5 within the critical flow regime. The source data underlying this relationship is re-examined, wherein it was found to be predominantly associated with eddy shedding frequency about fixed or stationary cylinders. The pronounced hump appears to be an artefact of the measurement techniques employed by various investigators to detect eddy-shedding frequency in the wake of the cylinder. A variety of contemporary test data for elastically mounted cylinders, with freedom to oscillate under one degree of freedom (i.e. cross flow) and two degrees of freedom (i.e. cross flow and in-line) were evaluated and compared against the conventional Strouhal Number relationship. It is well established for VIV that the eddy shedding frequency will synchronise with the near resonant motions of a dynamically oscillating cylinder, such that the resultant bandwidth of lock-in exhibits a wider range of effective Strouhal Numbers than that reflected in the narrow-banded relationship about a mean of 0.2. However, whilst cylinders oscillating under one degree of freedom exhibit a mean Strouhal Number of 0.2 consistent with fixed/stationary cylinders, cylinders with two degrees of freedom exhibit a much lower mean Strouhal Number of around 0.14–0.15. Data supports the relationship that Strouhal Number does slightly diminish with increasing Reynolds Number. For oscillating cylinders, the bandwidth about the mean Strouhal Number value appears to remain largely consistent. For many practical structures in the marine environment subject to VIV excitation, such as long span, slender risers, mooring lines, pipeline spans, towed array sonar strings, and alike, the long flexible cylinders will respond in two degrees of freedom, where the identified difference in Strouhal Number is a significant aspect to be accounted for in the modelling of its dynamic behaviour.


2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Zhipeng Tong ◽  
Gaohong Yu ◽  
Xiong Zhao ◽  
Pengfei Liu ◽  
Bingliang Ye

Abstract It has been challenging to design seedling pick-up mechanism based on given key points and trajectories, because it involves dimensional synthesis and rod length optimization. In this paper, the dimensional synthesis of seedling pick-up mechanism with planetary gear train was studied based on the data of given key points and the trajectory of the endpoint of seedling pick-up mechanism. Given the positions and orientations requirements of the five key points, the study first conducted a dimensional synthesis of the linkage size and center of rotation. The next steps were to select a reasonable solution and optimize the data values based on the ideal seedling trajectory. The link motion was driven by the planetary gear train of the two-stage gear. Four pitch curves of noncircular gears were obtained by calculating and distributing the transmission ratio according to the data. For the pitch curve with two convex points, the tooth profile design method of incomplete noncircular gear was applied. The seedling pick-up mechanism was tested by a virtual prototype and a physical prototype designed with the obtained parameter values. The results were consistent with the theoretical design requirements, confirming that the mechanism meets the expected requirements for picking seedlings up. This paper presents a new design method of vegetable pot seedling pick-up mechanism for an automatic vegetable transplanter.


2015 ◽  
Vol 39 (3) ◽  
pp. 431-441 ◽  
Author(s):  
Yi-Chang Wu ◽  
Tze-Cheng Wu

This paper presents embodiment design of 5-speed rear drive hubs for bicycles. A 7-link, 2-degrees of freedom (DOF) compound planetary gear train as the main body of a rear drive hub is introduced. The relationship between the number of coaxial links of a planetary gear train and the number of gear stages that a drive hub can provide with is discussed. By means of kinematic analysis, four speed ratios of the planetary gear train are derived, which represents four forward gears of the rear drive hub. By adding a direct-drive gear, five forward gears can be provided and two feasible clutching sequence tables are synthesized. Manual translational-type gear-shifting mechanisms are further designed to incorporate with the planetary gear train for appropriately controlling the gear stage. The power-flow path at each gear stage is checked to verify the feasibility of the proposed design. Finally, two novel 5-speed bicycle rear drive hubs are presented.


2006 ◽  
Vol 129 (9) ◽  
pp. 960-968 ◽  
Author(s):  
David R. Salgado ◽  
J. M. del Castillo

The objective of the present work is to determine the conditions that have to be satisfied for a planetary gear train of one degree of freedom to be self-locking. All planetary gear trains of up to six members are considered. As a result, we show the constructional solutions of planetary gear trains exhibiting self-locking. Unlike other studies, the self-locking conditions are obtained systematically from the analytical expression for the product of the efficiency of a given train by the efficiency of the train resulting from interchanging its input and output axes. Finally, a proof is given of an approximate relationship between these two efficiencies.


1992 ◽  
Vol 8 (2) ◽  
pp. 152-164 ◽  
Author(s):  
Dennis Wootten ◽  
Maury L. Hull

Described is the design of a foot/pedal interface intended as a research tool in the study of overuse knee injuries in cycling. The interface enables the systematic variation of factors that may affect loads transmitted by the knee joint. It permits two degrees of freedom of movement, inversion/eversion and abduction/adduction rotations, either separately or in combination. The movement permitted by each degree of freedom can be either free or resisted by spring assemblies. Sample data were collected to demonstrate the function of the foot/pedal interface. With no spring resistance, the interface functioned as intended by allowing free movement of the foot. Significant interaction was seen between the two degrees of freedom, with more motion and a larger absolute mean occurring when both degrees of freedom were allowed simultaneously. This emphasizes the need for a multi-degree-of-freedom interface when undertaking a comprehensive study of the factors affecting loads transmitted by the knee.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Chao Chen ◽  
Teck Teh Liang

Epicyclic gear train is a fundamental form of mechanical transmission with broad applications. Efficiency study of these trains is critical to design, optimization, and operation. It is known that the efficiencies of these systems are highly related to the internal power flows. We apply the concept of virtual power to find analytical expression of the efficiency of a two degrees of freedom train, with associated applicable ranges. The results are verified by an example.


Sign in / Sign up

Export Citation Format

Share Document