Numerical and Experimental Characterization of a Plate Compact Multipass Counter Flow and Locally Cross-Flow Recuperator

Author(s):  
Paolo M. Congedo ◽  
Giuseppe Starace

A compact and efficient heat exchanger for exhaust gas recovery energy was needed to raise the total efficiency of a thermo-photovoltaic system TPV (Thermo-Photo-Voltaic) for automotive applications (see [1]). In order to respect the strict condition of a high heat transfer surface to volume ratio, a heat exchanger configuration with a plate compact multi-pass counter flow and locally cross-flow recuperator has been chosen. The goal of this work is the understanding of the behaviour of the heat exchanger with numerical and experimental analysis for different geometrical and operating conditions. A high number of dimensions and manufacturing constraints was evaluated before reaching a definite design of a compact and efficient heat exchanger to be tested in the lab for initial experiments. The experimental work was needed in order to validate the numerical model. As the material needed for the real application could not be easily manufactured and instrumented in a workshop, a simplified real model, made of brass, was built, in order to compare numerical results and experimental findings. It was supposed that results obtained in this way would be sufficient to be considered valid when extrapolated in the real heat exchanger high temperature operating conditions and manufacturing material. The experimental results have been successfully compared with numerical ones obtained with the Fluent CFD code (release 6.2.16) Curves of performance (ε-NTU diagram plotted as a function of the ratio between the minimum and the maximum thermal capacities of the flows and pressure drop -mass flowrate diagram as a function of the average temperature) have been obtained and were useful to choose the adequate configuration for different applications, depending on the requested heat transfer and maximum allowable pressure drop. The output of the investigation was: heat transfer, outlet temperatures for both air flows, heat exchanger efficiency, differential pressure drop for both hot and cold sides. After this validation final numerical simulations have been carried out in order to understand the dependence of the heat exchanger efficiency on other geometrical parameters and operating conditions such as plates dimensions, numbers and height of vanes, operating pressure and so on.

Author(s):  
M. Sabari ◽  
D. Channankiah ◽  
D. Shivalingappa

Heat exchanger plays a major role in almost all mechanical industries. Enhancement of heat transfer surface plays major role in numerous applications such as in heat exchangers, refrigeration and air conditioning systems etc. This paper examines the fluid flow and heat exchange on the air side of a multi-row fin-and-tube heat exchanger. A brief comparison is given between fin-and-tube heat exchanger attributes with louvered fins in a wider range of operating conditions defined by inlet air velocities. The brief representation on the calculated data for the louvered heat exchanger shows better heat transfer characteristics with a slightly higher pressure drop. The CFD procedure is validated by comparing the numerical simulation results with different inlet air velocities. Best combination of higher heat transfer and minimum pressure drop are occurred in inlet air velocity of 2.5 m/s.


2004 ◽  
Vol 2004.14 (0) ◽  
pp. 331-334
Author(s):  
Kazuhiko SATO ◽  
Hiroshi KUROTANI ◽  
Himsar Ambarita ◽  
Jun SUZUKI ◽  
Norihiko KAMADA ◽  
...  

2013 ◽  
Vol 388 ◽  
pp. 149-155 ◽  
Author(s):  
Mazlan Abdul Wahid ◽  
Ahmad Ali Gholami ◽  
H.A. Mohammed

In the present work, laminar cross flow forced convective heat transfer of nanofluid over tube banks with various geometry under constant wall temperature condition is investigated numerically. We used nanofluid instead of pure fluid ,as external cross flow, because of its potential to increase heat transfer of system. The effect of the nanofluid on the compact heat exchanger performance was studied and compared to that of a conventional fluid.The two-dimensional steady state Navier-Stokes equations and the energy equation governing laminar incompressible flow are solved using a Finite volume method for the case of flow across an in-line bundle of tube banks as commercial compact heat exchanger. The nanofluid used was alumina-water 4% and the performance was compared with water. In this paper, the effect of parameters such as various tube shapes ( flat, circle, elliptic), and heat transfer comparison between nanofluid and pure fluid is studied. Temperature profile, heat transfer coefficient and pressure profile were obtained from the simulations and the performance was discussed in terms of heat transfer rate and performance index. Results indicated enhanced performance in the use of a nanofluid, and slight penalty in pressure drop. The increase in Reynolds number caused an increase in the heat transfer rate and a decrease in the overall bulk temperature of the cold fluid. The results show that, for a given heat duty, a mas flow rate required of the nanofluid is lower than that of water causing lower pressure drop. Consequently, smaller equipment and less pumping power are required.


2015 ◽  
Vol 787 ◽  
pp. 72-76 ◽  
Author(s):  
V. Naveen Prabhu ◽  
M. Suresh

Nanofluids are fluids containing nanometer-sized particles of metals, oxides, carbides, nitrides, or nanotubes. They exhibit enhanced thermal performance when used in a heat exchanger as heat transfer fluids. Alumina (Al2O3) is the most commonly used nanoparticle due to its enhanced thermal conductivity. The work presented here, deals with numerical simulations performed in a tube-in-tube heat exchanger to study and compare flow characteristics and thermal performance of a tube-in-tube heat exchanger using water and Al2O3/water nanofluid. A local element-by-element analysis utilizing e-NTU method is employed for simulating the heat exchanger. Profiles of hot and cooling fluid temperatures, pressure drop, heat transfer rate along the length of the heat exchanger are studied. Results show that heat exchanger with nanofluid gives improved heat transfer rate when compared with water. However, the pressure drop is more, which puts a limit on the operating conditions.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5489
Author(s):  
Karthik Silaipillayarputhur ◽  
Tawfiq Al-Mughanam

All process industries involve the usage of heat exchanger equipment and understanding its performance during the design phase is very essential. The present research work specifies the performance of a pure cross flow heat exchanger in terms of dimensionless factors such as number of transfer units, capacity rate ratio, and heat exchanger effectiveness. Steady state sensible heat transfer was considered in the analysis. The matrix approach that was established in the earlier work was used in the study. The results were depicted in the form of charts, tables, and performance equations. It was observed that indeterminately increasing the number of transfer units past a threshold limit provided very marginal improvement in the performance of a pure cross flow heat exchanger. Likewise, flow pattern in a heat exchanger is usually assumed either as mixed or unmixed. However, due to various operating conditions, partially mixed conditions do exist. This work considers partially mixed conditions in the tube side of the heat exchanger. The correction factor for heat exchanger effectiveness was developed to accommodate partially mixed flow conditions in the pure cross flow heat exchanger.


2020 ◽  
Vol 15 (57) ◽  
pp. 1057-1068
Author(s):  
Eslam Usama ◽  
Nabil Abd el Aziz ◽  
Walid aboelsoud ◽  
Ahmed Mohammed

Author(s):  
M. H. Saidi ◽  
A. A. Mozafari ◽  
A. R. Esmaeili Sany ◽  
J. Neyestani

In this Study, radiator performance for passenger car has been studied experimentally in wide range of operating conditions. Experimental prediction of Nusselt number and heat transfer coefficient for coolant in radiator tubes are also performed with ε–NTU method. The total effectiveness coefficient of radiator and heat transfer coefficient in air side is calculated via try and error method considering experimental data. The Colburn factor and pressure drop are also estimated for this heat exchanger. Examples of application demonstrate the practical usefulness of this method to provide empirical data which can be used during the design stage.


Author(s):  
Marjan Goodarzi ◽  
Ahmad Amiri ◽  
Mohammad Shahab Goodarzi ◽  
Mohammad Reza Safaei ◽  
Arash Karimipour ◽  
...  

Author(s):  
G. N. Xie ◽  
Q. Y. Chen ◽  
M. Zeng ◽  
Q. W. Wang

Compact heat exchangers such as tube-fin types and plate-fin types are widely used for gas-liquid or gas-gas applications. Some examples are air-coolers, fan coils, regenerators and recuperators in micro-turbines. In this study, thermal design of fin-and-tube (tube-fin) heat exchanger performance with fins being employed outside and inside tubes was presented, with which designed plate-fin heat exchanger was compared. These designs were performed under identical mass flow rate, inlet temperature and operating pressure on each side for recuperator in 100kW microturbine as well as specified allowable fractions of total pressure drop by means of Log-Mean Temperature Difference (LMTD) method. Heat transfer areas, volumes and weights of designed heat exchangers were evaluated. It is shown that, under identical heat duty, fin-and-tube heat exchanger requires 1.8 times larger heat transfer area outside tubes and volume, 0.6 times smaller heat transfer area inside tubes than plate-fin heat exchanger. Under identical total pressure drop, fin-and-tube heat exchanger requires about 5 times larger volume and heat transfer area in gas-side, 1.6 times larger heat transfer area in air-side than plate-fin heat exchanger. Total weight of fin-and-tube heat exchanger is about 2.7 times higher than plate-fin heat exchanger, however, the heat transfer rate of fin-and-tube heat exchanger is about 1.4 times larger than that of plate-fin heat exchanger. It is indicated that, both-sides finned tube heat exchanger may be used in engineering application where the total pressure drop is severe to a small fraction and the operating pressure is high, and may be adopted for recuperator in microturbine.


Sign in / Sign up

Export Citation Format

Share Document