Improve Hunting of a Railway Vehicle Using Semi-Active Primary Suspension

Author(s):  
Abbas Fotoohi ◽  
Aghil Yousefi-Koma

Hunting is a very common instability phenomenon in rail vehicles operating at high speeds. The hunting phenomenon is a self excited lateral oscillation produced by the forward speed of the vehicle and the wheel-rail interactive forces caused by the conicity of the wheel-rail contours and the friction-creep characteristics of the wheel-rail contact geometry. Hunting can lead to severe ride discomfort and eventual physical damage to wheels and rails. This research is conducted to demonstrate advantages of semi-active primary suspension in railway vehicle for control of hunting phenomenon. Semi-active suspension consists of some actuators on each bogie located in primary suspension position in addition to vertical passive dampers. A simple on-off switching is used here and the actuator force is determined regarding to wheelset displacement. An integration of a control design tool, i.e. MATLAB, together with a tool for railway vehicle simulation, i.e. ADAMS/Rail is utilized for modeling and control design simultaneously. Analysis has been performed on a traditional bogie model with passive primary suspension and on a new bogie model with semi-active suspension. The effects of semi-active suspension system on lateral displacement and yaw motion of wheelset have also been investigated. Results show that the semi-active suspension improves the stability by controlling displacement magnitude.

Robotica ◽  
2013 ◽  
Vol 32 (4) ◽  
pp. 515-532 ◽  
Author(s):  
Adam Y. Le ◽  
James K. Mills ◽  
Beno Benhabib

SUMMARYA novel rigid-body control design methodology for 6-degree-of-freedom (dof) parallel kinematic mechanisms (PKMs) is proposed. The synchronous control of PKM joints is addressed through a novel formulation of contour and lag errors. Robust performance as a control specification is addressed. A convex combination controller design approach is applied to address the problem of simultaneously satisfying multiple closed-loop specifications. The applied dynamic modeling approach allows the design methodology to be extended to 6-dof spatial PKMs. The methodology is applied to the design of a 6-dof PKM-based meso-milling machine tool and simulations are conducted.


Author(s):  
X. Cheng ◽  
J.M.A. Scherpen

Network systems consist of subsystems and their interconnections and provide a powerful framework for the analysis, modeling, and control of complex systems. However, subsystems may have high-dimensional dynamics and a large number of complex interconnections, and it is therefore relevant to study reduction methods for network systems. Here, we provide an overview of reduction methods for both the topological (interconnection) structure of a network and the dynamics of the nodes while preserving structural properties of the network. We first review topological complexity reduction methods based on graph clustering and aggregation, producing a reduced-order network model. Next, we consider reduction of the nodal dynamics using extensions of classical methods while preserving the stability and synchronization properties. Finally, we present a structure-preserving generalized balancing method for simultaneously simplifying the topological structure and the order of the nodal dynamics. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4 is May 3, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2020 ◽  
Vol 10 (10) ◽  
pp. 3514 ◽  
Author(s):  
Adam Szabo ◽  
Tamas Becsi ◽  
Peter Gaspar

The paper presents the modeling and control design of a floating piston electro-pneumatic gearbox actuator and, moreover, the industrial validation of the controller system. As part of a heavy-duty vehicle, it needs to meet strict and contradictory requirements and units applying the system with different supply pressures in order to operate under various environmental conditions. Because of the high control frequency domain of the real system, post-modern control methods with high computational demands could not be used as they do not meet real-time requirements on automotive level. During the modeling phase, the essential simplifications are shown with the awareness of the trade-off between calculation speed and numerical accuracy to generate a multi-state piecewise-linear system. Two LTI control methods are introduced, i.e., a PD and an Linear-Quadratic Regulators (LQR) solution, in which the continuous control signals are transformed into discrete voltage solenoid commands for the valves. The validation of both the model and the control system are performed on a real physical implementation. The results show that both modeling and control design are suitable for the control tasks using floating piston cylinders and, moreover, these methods can be extended to electro-pneumatic cylinders with different layouts.


1973 ◽  
Vol 95 (1) ◽  
pp. 28-35 ◽  
Author(s):  
E. Harry Law ◽  
R. S. Brand

The nonlinear equations of motion for a railway vehicle wheelset having curved wheel profiles and wheel-flange/rail contact are presented. The dependence of axle roll and vertical displacement on lateral displacement and yaw is formulated by two holonomic constraint equations. The method of Krylov-Bogoliubov is used to derive expressions for the amplitudes of stationary oscillations. A perturbation analysis is then used to derive conditions for the stability characteristics of the stationary oscillations. The expressions for the amplitude and the stability conditions are shown to have a simple geometrical interpretation which facilitates the evaluation of the effects of design parameters on the motion. It is shown that flange clearance and the nonlinear variation of axle roll with lateral displacement significantly influence the motion of the wheelset. Stationary oscillations may occur at forward speeds both below and above the critical speed at which a linear analysis predicts the onset of instability.


Sign in / Sign up

Export Citation Format

Share Document