Design, Modeling and Functionality Allocation in Mechatronic Production Systems

Author(s):  
Reimund Neugebauer ◽  
Welf-Guntram Drossel ◽  
Steffen Ihlenfeldt ◽  
Markus Wabner

This paper reviews current developments in mechatronic systems for metal cutting and forming machine tools. The integration of mechatronic modules to the machine tool and their interaction with manufacturing processes are presented. Sample mechatronic components for precision positioning and compensation of static, dynamic and thermal errors are presented as examples. The effect of modular integration of mechatronic systems on the reconfigurability and reliability of the machine tools is discussed along with intervention strategies during machine tool operations. The performance and functionality aspects are discussed through active and passive intervention methods. A special emphasis was placed on active and passive damping of vibrations through piezo, magnetic, and electro-hydraulic actuators. The modular integration of mechatronic components into the machine tool’s structure, electronic unit, and CNC software system is presented. The paper concludes with the current research challenges required to expand the application of mechatronics in machine tools and manufacturing systems.

2002 ◽  
Vol 01 (01) ◽  
pp. 67-87 ◽  
Author(s):  
BYUNG-KWON MIN ◽  
ZHENGDONG HUANG ◽  
ZBIGNIEW J. PASEK ◽  
DEREK YIP-HOI ◽  
FORBES HUSTED ◽  
...  

This paper presents a new integrated approach for simulation developed to improve the accuracy of virtual manufacturing environments. While machine tool simulation and virtual manufacturing for factory simulation have been frequently used in early stage plant development, each of these technique has been researched and implemented separately. This paper focuses on the utilization of real-time simulation of machine tools or active axes in manufacturing systems and integration of this simulation capability with virtual manufacturing environments. Machine-level simulation results are generated in real-time with a real machine tool controller and are fed to a virtual manufacturing environment. To integrate these two simulation techniques, system-level software is utilized as a communication platform. This system-level software was originally developed to control and configure whole manufacturing systems. The method has been successfully implemented within a testbed with full-scale machine tools. The results demonstrate that the proposed method advances the virtual manufacturing environments toward improved accuracy of factory level simulation, reduced effort for modeling and expanded functionality of machine-level simulations.


2019 ◽  
Vol 19 (3) ◽  
pp. 5-17
Author(s):  
Friedrich BLEICHER ◽  
Christoph REICHL ◽  
Felix LINHARDT ◽  
Peter WIMBERGER ◽  
Christoph HABERSOHN ◽  
...  

Machine tools are highly integrated mechatronic systems consisting of dedicated mechanic design and integrated electrical equipment - in particular drive systems and the CNC-control - to realize the complex relative motion of tool towards work piece. Beside the process related capabilities, like static and dynamic stiffness as well as accuracy behavior and deviation resistance against thermal influence, safety aspects are of major interest. The machine tool enclosure must fulfill multiple requirements like retention capabilities against the moving parts of broken tools, lose work pieces or clamping components. In regular use, the noise emission have to be inhibited at the greatest possible extent by the machine tool enclosure. Nevertheless, the loading door and the moving parts of the workspace envelope are interfaces where noise transmission is harder to be avoided and therefore local noise emissions increase. The aim of the objective investigation is to analyse the noise emission of machine tools to determine the local noise transmission of a machine tool enclosure by using arrays of microphones. By the use of this measuring method, outer surfaces at the front, the side and on the top of the enclosure have been scanned. The local transient acoustic pressures have been recorded using a standard noise source placed on the machine table. In addition, an exemplary manufacturing process has been performed to analyse the frequency dependent location resolved sound emissions.


2019 ◽  
Vol 13 (5) ◽  
pp. 573-573 ◽  
Author(s):  
Yohichi Nakao ◽  
Hayato Yoshioka

With the 2011 launch of Industrie 4.0, a German project aiming to promote the computerization of manufacturing, the integration of physical or actual manufacturing systems with cyber-physical systems (CPS) using various technologies, such as the Internet of things (IoT), industrial Internet of things (IIOT), and artificial intelligence, is considered to be more important than ever before. One of the goals of the Industrie 4.0 is to realize smart factories or smart manufacturing using advanced digital technologies. However, the core component in the manufacturing systems is still machine tools. This special issue, composed of eleven excellent research papers, focuses on the latest research advances in machine tools and manufacturing processes. It covers various topics, including machine tool control, tool path generation for multi-axis machining, and machine tool components. Furthermore, this special issue includes innovative machining technologies, including not only cutting and grinding processes but also the EDM process and burnishing process connected effectively with force control techniques. All the research contributions were presented at IMEC2018, a joint event with JIMTOF2018, held in Tokyo, Japan in 2018. The editors would like to sincerely thank the authors for their dedication and for their well written and illustrated manuscripts. We are also profoundly grateful for the efforts of all the reviewers who ensured their quality. Finally, we sincerely hope that studies on machine tools and related manufacturing technologies will further contribute to the development of our global society.


Author(s):  
Fumiki Tanaka

Abstract Achieving high performance of machining production systems requires the use of multi-axis machine tools. In order to maximize the performance of multi-axis machine tools, micro process planning for creating machining data is important. Many researches on micro process planning mainly focused on 3-axis machining. As promising approaches among them, a micro process planning system was proposed that reuses actual machining cases and analyzes case data to derive the necessary rules. However, it is not always effective for multi-axis machining, because enough case data are not collected for micro process planning of a specific multi-axis machine tool. In this study, a digital twin of multi-axis machine tool in cyberspace is proposed to collect real and virtual machining case data for micro process planning.


Author(s):  
Roberto Pérez ◽  
José Eduardo Márquez ◽  
Arturo Molina ◽  
Miguel Ramírez-Cadena ◽  
Ricardo Del Risco ◽  
...  

Today, the micro-factory concept of downsizing production systems is essential to manufacturing small products in sustainable growth. Concerning this, this paper presents the developments accomplished during the recent years at Tecnológico de Monterrey (Mexico) and Holguin University (Cuba) introducing new findings related to the design of reconfigurable micro-factories based-on micro-machine tools. The chapter discusses the proposed framework for the optimizing the development of micro-factories in the context of micro-reconfigurable manufacturing systems based-on micro-reconfigurable machine tools. The novel methodology for optimizing the scheduling of reconfigurable micro-factories were exposed and a scheduling optimization of a reconfigurable micro-factory prototype was designed and tested.


2018 ◽  
Vol 12 (4) ◽  
pp. 507-513
Author(s):  
Makoto Fujishima ◽  
◽  
Takashi Hoshi ◽  
Hiroki Nakahira ◽  
Masafumi Takahashi ◽  
...  

Mass-production machining systems that are comprised of machine tools are often configured in series by dividing the machining processes in order to manage the large production volume. This indicates that if one of the machines stops owing to a mechanical malfunction, the entire production line needs to be stopped. Thus, machine tools in mass-production systems are required to be highly reliable and easy to maintain. Predictive maintenance, which enables operators to detect any signs of failure in the machine tool components, needs to be performed for the machines as well. In this work, various approaches for the improvement of the maintainability of machine tools used in a mass-production system are reported.


2013 ◽  
Vol 769 ◽  
pp. 278-284 ◽  
Author(s):  
Karl Doreth ◽  
Jan Henjes ◽  
Stefan Kroening

For environmental and economic reasons, energy- and resource- efficient operations of cutting machines are increasingly important. The determination of properties and functions of machine tools, which affect future energy consumption in operation, essentially takes place within the design phase by combining required components. Therefore, it is necessary to develop approaches to find an efficient optimum between energy consumption, productivity, acquisition costs and operating costs within the design phase of a machine tool. However, the energy consumption of a machine tool depends on the application scenario. In addition to that, it is difficult to forecast the energy consumption of several components because of their mutual interaction. Existing approaches to forecast the energy consumption of a machine tool within design phase are based on complex simulation or mathematical models which are difficult to parameterize for the design of a machine tool and thus, for the comparison of various configuration alternatives. An alternative for forecasting energy consumption is the use of empirical information. That information can be acquired by measuring the energy consumption of machine tools in operating production systems. This paper presents an approach to forecast the energy consumption of machine tools within the design phase, which will be developed by the Institute of Production Engineering and Machine Tools. It will be based on the data feedback (empirical information) from a machine tool operating in an existing manufacturing system. For this purpose, a logger module will be developed, which continually captures the energy consumption by means of the machine integrated sensors. That information will be sent back to an energy navigator module, which processes that information in order to forecast the energy consumption of a new designed machine tool. Also, the lifecycle costs will be calculated in order to rate cost and benefits of each machines lifecycle in terms of energy consumption.


2016 ◽  
Vol 106 (06) ◽  
pp. 451-456
Author(s):  
F. Prof. Klocke ◽  
P. Prof. Letmathe ◽  
J. Stauder ◽  
P. Bußwolder

Kürzere Produktlebenszyklen stellen produzierende Unternehmen in Deutschland vor die Herausforderung, Anläufe häufiger und in immer kürzerer Zeit zu bewältigen. Um dieser Herausforderung zu begegnen, müssen Produktionssysteme im Hinblick auf die Anlaufphase optimiert werden. In Kooperation zwischen dem Werkzeugmaschinenlabor WZL und dem Lehrstuhl für Controlling der RWTH Aachen entstand ein erster Ansatz für soziotechnische Produktionssysteme.   Due to shorter product life cycles, manufacturing companies in Germany have to face the challenge of managing ramp-ups more often and in ever decreasing times. To overcome these challenges, manufacturing systems must be optimized with regard to the ramp-up stage. As a result of the collaboration of the Laboratory for Machine Tools and Production Engineering and the Chair for Management Accounting of the RWTH Aachen university, a first approach for socio-technical manufacturing was developed.


2015 ◽  
Vol 220-221 ◽  
pp. 485-490
Author(s):  
Mirosław Pajor ◽  
Kamil Stateczny

Modern CNC machine tools constitute advanced mechatronic systems. Numerous works are undertaken on the development of new intelligent control systems for CNC machine tools [1–5] equipped with unique diagnostic systems. One of the development directions of CNC control systems is exploring new forms and techniques of operator-machine communication as well as new, simpler machine tool programming procedures. Nowadays, there are many techniques for programming CNC machine tools [6], [7]. These techniques have taken a variety of forms both due to historical limits of technology and various environmental requirements. Despite the existence of complex control systems for operation and programming CNC machine tools or CAD/CAM systems facilitating the generation of a machining strategy for complicated elements, there is a demand for machine tools that are easier to operate, and therefore do not require advanced programming skills for operation.


2017 ◽  
Vol 11 (3) ◽  
pp. 339-339
Author(s):  
Toshimichi Moriwaki ◽  

I would like to extend my sincere congratulation on the tenth anniversary of the International Journal of Automation Technology. The journal has been successfully publishing, for the last ten years, original scientific papers, review papers, technical papers, and technical notes as well as special issues on dedicated topics, all related to recent advancements in automation technology. I am most respectful to not only the editors and the publisher but also the contributors of the papers for their continued efforts. It is quite unique that the journal covers a wide spectrum of scientific and technical topics in the field of automation technology, including manufacturing systems, production planning, robotics, machine tools, control, manufacturing processes, metrology, etc. The Journal has been contributing greatly to the engineers in various industries to improve their productivity and also to the scientists and researchers to conceive new ideas and to publish their research results. If we look back on the developmental history of the machine tool, which is the key to manufacturing automation, it started as a manual machine and then evolved into a mechanized or powered machine tool, a numerically controlled machine tool, and then an intelligent machine tool. It is thus expected that information technology, including IoT, Industry 4.0, the handling of so called big data, and the intelligent control of machine tools and robots as well as advanced processing technologies will play important roles in advanced and automated manufacturing in the future. I expect that the International Journal of Automation Technology will continue to be the major information source for the scientists and engineers who will create new values for manufacturing technologies in the future. Toshimichi Moriwaki November 6, 2016


Sign in / Sign up

Export Citation Format

Share Document