Natural Convection-Radiation Heat Transfer in Rectangular Cavity With the Presence of Participating Media

Author(s):  
Behnam Moghadassian ◽  
Farshad Kowsary ◽  
Hamed Gholamian

The problem of natural convection radiation with the presence of participating fluid in a tilted square cavity has been investigated numerically. Two vertical walls are at uniform different temperatures while the others are adiabatic. The working fluid is taken as grey, absorbing, emitting and non-scattering. The finite volume method is used to solve the dimensionless governing equations and SIMPLE algorithm is applied for pressure velocity coupling. The radiative heat flux gradient is estimated by finding radiative intensities from the radiative transfer equation (RTE). A very recent method, called the QL method, is utilized to solve RTE. In this study the effects of the inclination angle, Rayleigh number and optical thickness on the heat transfer and flow characteristics are studied. A great accuracy in the results was observed in the prediction of flow contours and average radiative and convective Nusselt numbers at walls.

2019 ◽  
Vol 30 (01) ◽  
pp. 1950006 ◽  
Author(s):  
Abdellaziz Yahiaoui ◽  
Mahfoud Djezzar ◽  
Hassane Naji

This paper performs a numerical analysis of the natural convection within two-dimensional enclosures (square enclosure and enclosures with curved walls) full of a H2O-Cu nanofluid. While their vertical walls are isothermal with a cold temperature [Formula: see text], the horizontal top wall is adiabatic and the bottom wall is kept at a sinusoidal hot temperature. The working fluid is assumed to be Newtonian and incompressible. Three values of the Rayleigh number were considered, viz., 103, 104, 105, the Prandtl number is fixed at 6.2, and the volume fraction [Formula: see text] is taken equal to 0% (pure water), 10% and 20%. The numerical simulation is achieved using a 2D-in-house CFD code based on the governing equations formulated in bipolar coordinates and translated algebraically via the finite volume method. Numerical results are presented in terms of streamlines, isotherms and local and average Nusselt numbers. These show that the heat transfer rate increases with both the volume fraction and the Rayleigh number, and that the average number of Nusselt characterizing the heat transfer raises with the nanoparticles volume fraction.


Author(s):  
Milorad B. Dzodzo

Laminar natural convection in cubic and rhomb–shaped enclosures (rhomb angles 59°, 44° and 28.2°) with two opposite vertical walls kept at different temperatures was investigated experimentally and numerically. The enclosures were filled with glycerol and the Rayleigh (Ra) and Prandtl (Pr) numbers ranged from 2,000<Ra<369,000 and 2,680<Pr<7,000. The visualization of the velocity and temperature fields was obtained by using Plexiglass and liquid crystal particles as tracers. The finite volume method based on the finite difference approach was applied for numerical analysis. The velocity and temperature fields and average Nusselt numbers were found as a function of the Reyleigh and Prandtl numbers. Comparison of the average Nusselt numbers for cubic and rhomb-shaped enclosures indicates decrease of heat transfer for the cases when the lower and upper vertical walls of the rhomb-shaped enclosures are at lower and higher temperatures, respectively. This is due to the tendency of fluid stratification in the lower and upper corners.


1990 ◽  
Vol 112 (3) ◽  
pp. 640-647 ◽  
Author(s):  
D. A. Olson ◽  
L. R. Glicksman ◽  
H. M. Ferm

Steady-state natural convection, which occurs in building enclosures (Rayleigh numbers of 1010), was studied experimentally in a full-scale room and in a 1:5.5 small-scale physical model containing R114 gas. The model was geometrically similar, had the same Rayleigh number, and had the same dimensionless end wall temperatures as the full-scale room. Configurations were tested with the enclosure empty, with a vertical partition extending from the floor to midheight, and with the vertical partition raised slightly off the floor. For isothermal opposing end walls at different temperatures, excellent agreement was found between the full-scale room and the scale model in flow patterns, velocity levels, temperature distributions, and heat transfer, even though the radiation heat transfer was not scaled between the two models.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2048
Author(s):  
Piotr Bogusław Jasiński ◽  
Michał Jan Kowalczyk ◽  
Artur Romaniak ◽  
Bartosz Warwas ◽  
Damian Obidowski ◽  
...  

The results of numerical investigations of heat transfer and pressure drops in a channel with 30° helical micro-fins are presented. The main aim of the analysis is to examine the influence of the height of the micro-fins on the heat-flow characteristics of the channel. For the tested pipe with a diameter of 12 mm, the micro-fin height varies within the range of 0.05–0.40 mm (with 0.05 mm steps), which is equal to 0.4–3.3% of its diameter. The analysis was performed for a turbulent flow, within the range of Reynolds numbers 10,000–100,000. The working fluid is water with an average temperature of 298 K. For each tested geometry, the characteristics of the friction factor f(Re) and the Nusselt number Nu(Re) are shown in the graphs. The highest values of Nusselt numbers and friction factors were obtained for pipes with the micro-fins H = 0.30 mm and H = 0.35 mm. A large discrepancy is observed in the friction factors f(Re) calculated from the theoretical relationships (for the irregular relative roughness values shown in the Moody diagram) and those obtained from the simulations (for pipes with regular roughness formed by micro-fins). The PEC (Performance Evaluation Criteria) heat transfer efficiency analysis of the geometries under study is also presented, taking into account the criterion of the same pumping power. The highest PEC values, reaching 1.25, are obtained for micro-fins with a height of 0.30 mm and 0.35 mm and with Reynolds numbers above 40,000. In general, for all tested geometries and for large Reynolds numbers (above 20,000), the PEC coefficient reaches values greater than 1, while for lower Reynolds numbers (less than 20,000), its values are less than 1.


Author(s):  
CRISTIAN URIEL MENDOZA CASTELLANOS ◽  
Jan Armengol ◽  
Carlos Salinas ◽  
Rafael Beicker Barbosa ◽  
Rogério Gonçalves dos Santos

2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Yuping Duan ◽  
S. F. Hosseinizadeh ◽  
J. M. Khodadadi

The effects of insulated and isothermal thin baffles on pseudosteady-state natural convection within spherical containers were studied computationally. The computations are based on an iterative, finite-volume numerical procedure using primitive dependent variables. Natural convection effect is modeled via the Boussinesq approximation. Parametric studies were performed for a Prandtl number of 0.7. For Rayleigh numbers of 104, 105, 106, and 107, baffles with three lengths positioned at five different locations were investigated (120 cases). The fluid that is heated adjacent to the sphere rises replacing the colder fluid, which sinks downward through the stratified stable thermal layer. For high Ra number cases, the hot fluid at the bottom of the sphere is also observed to rise along the symmetry axis and encounter the sinking colder fluid, thus causing oscillations in the temperature and flow fields. Due to flow obstruction (blockage or confinement) effect of baffles and also because of the extra heating afforded by the isothermal baffle, multi-cell recirculating vortices are observed. This additional heat is directly linked to creation of another recirculating vortex next to the baffle. In effect, hot fluid is directed into the center of the sphere disrupting thermal stratified layers. For the majority of the baffles investigated, the Nusselt numbers were generally lower than the reference cases with no baffle. The extent of heat transfer modification depends on Ra, length, and location of the extended surface. With an insulated baffle, the lowest amount of absorbed heat corresponds to a baffle positioned horizontally. Placing a baffle near the top of the sphere for high Ra number cases can lead to heat transfer enhancement that is linked to disturbance of the thermal boundary layer. With isothermal baffles, heat transfer enhancement is achieved for a baffle placed near the bottom of the sphere due to interaction of the counterclockwise rotating vortex and the stratified layer. For some high Ra cases, strong fluctuations of the flow and thermal fields indicating departure from the pseudosteady-state were observed.


Sign in / Sign up

Export Citation Format

Share Document