CFD Study of Ejector Efficiencies

Author(s):  
Giorgio Besagni ◽  
Riccardo Mereu ◽  
Emanuela Colombo

This paper presents a method to evaluate ejector efficiency in function of local flow parameters. The paper is divided into two parts. In the first part, a Computational Fluid-Dynamics (CFD) approach for convergent nozzle ejectors is presented and computational results are validated using experimental velocity and temperature profiles at different sections. The validation process includes the evaluation of seven Reynolds-Averaged Navier–Stokes (RANS) turbulence models: the Spalart-Allmaras and the k–omega SST models show better performance in terms of convergence capability and flow and thermal field prediction. In the second part, local flow phenomena and their influence on ejector component efficiencies are investigated. The validated CFD approach is used to determine the efficiencies of the ejector primary nozzle, suction chamber, and mixing zone. Efficiency maps, regressing equation linking efficiencies, and local flow quantities are proposed and discussed. Finally, global ejector performance is mapped and considerations are outlined.

2021 ◽  
Author(s):  
Liwu Wang ◽  
Jian Feng ◽  
Yu Liu ◽  
Sijun Zhang

Abstract This paper presents an efficient and scalable method to calculate the minimum wall distance (MWD), which is necessary for the Reynolds-Averaged Navier-Stokes (RANS) turbulence models. The MWD is described by the distance field function which is essentially a partial differential equation (PDE). The PDE is a type of convection-diffusion equation and can be solved by existing computational fluid dynamics (CFD) codes with minor modifications. Parallel computations for the PDE are conducted to study its efficiency and scalability. Encouraging results are obtained and demonstrate the present method is more efficient than all the alternate methods.


2021 ◽  
Vol 9 (3) ◽  
pp. 264
Author(s):  
Shanti Bhushan ◽  
Oumnia El Fajri ◽  
Graham Hubbard ◽  
Bradley Chambers ◽  
Christopher Kees

This study evaluates the capability of Navier–Stokes solvers in predicting forward and backward plunging breaking, including assessment of the effect of grid resolution, turbulence model, and VoF, CLSVoF interface models on predictions. For this purpose, 2D simulations are performed for four test cases: dam break, solitary wave run up on a slope, flow over a submerged bump, and solitary wave over a submerged rectangular obstacle. Plunging wave breaking involves high wave crest, plunger formation, and splash up, followed by second plunger, and chaotic water motions. Coarser grids reasonably predict the wave breaking features, but finer grids are required for accurate prediction of the splash up events. However, instabilities are triggered at the air–water interface (primarily for the air flow) on very fine grids, which induces surface peel-off or kinks and roll-up of the plunger tips. Reynolds averaged Navier–Stokes (RANS) turbulence models result in high eddy-viscosity in the air–water region which decays the fluid momentum and adversely affects the predictions. Both VoF and CLSVoF methods predict the large-scale plunging breaking characteristics well; however, they vary in the prediction of the finer details. The CLSVoF solver predicts the splash-up event and secondary plunger better than the VoF solver; however, the latter predicts the plunger shape better than the former for the solitary wave run-up on a slope case.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
C. Chin ◽  
M. Li ◽  
C. Harkin ◽  
T. Rochwerger ◽  
L. Chan ◽  
...  

A numerical study of compressible jet flows is carried out using Reynolds averaged Navier–Stokes (RANS) turbulence models such as k-ɛ and k-ω-SST. An experimental investigation is performed concurrently using high-speed optical methods such as Schlieren photography and shadowgraphy. Numerical and experimental studies are carried out for the compressible impinging at various impinging angles and nozzle-to-wall distances. The results from both investigations converge remarkably well and agree with experimental data from the open literature. From the flow visualizations of the velocity fields, the RANS simulations accurately model the shock structures within the core jet region. The first shock cell is found to be constraint due to the interaction with the bow-shock structure for nozzle-to-wall distance less than 1.5 nozzle diameter. The results from the current study show that the RANS models utilized are suitable to simulate compressible free jets and impinging jet flows with varying impinging angles.


2005 ◽  
Author(s):  
Sowjanya Vijiapurapu ◽  
Jie Cui

The Reynolds averaged Navier-Stokes (RANS) equations were solved along with three turbulence models, namely κ-ε, κ-ω, and Reynolds stress models (RSM), to study the fully developed turbulent flows in circular pipes roughened by repeated square ribs. The spacing between the ribs was varied to form three representative types of surface roughness; d–type, intermediate, and k–type. Solutions of these flows at two Reynolds numbers were obtained using the commercial computational fluid dynamics (CFD) software Fluent. The numerical results were validated against experimental measurements and other numerical data published in literature. Extensive investigation of effects of rib spacing and Reynolds number on the pressure and friction resistance, flow and turbulence distribution was presented. The performance of three turbulence models was also compared and discussed.


2016 ◽  
Vol 40 (3) ◽  
pp. 317-329 ◽  
Author(s):  
Mustafa Kemal Isman

The turbulent flow over backward-facing step (BFS) is numerically investigated by using FLUENT® code. Both uniform and non-uniform velocity profiles are used as inlet boundary condition. Five different Reynolds averaged Navier–Stokes (RANS) turbulence models are employed. The Std. k–ω model shows the best agreement with the experimental data among the models used under the conditions considered in this study. The results show that using a uniform velocity profile has a negative effect on predictions if the domain is not sufficiently extended upstream from the inlet. To eliminate this effect, the domain should be extended upstream by about 10Dh from the inlet. However, results show that this extension causes absorption effects of inlet parameters such as inlet turbulence intensity.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Adrienne B. Little ◽  
Yann Bartosiewicz ◽  
Srinivas Garimella

Passive, heat actuated ejector pumps offer simple and energy-efficient options for a variety of end uses with no electrical input or moving parts. In an effort to obtain insights into ejector flow phenomena and to evaluate the effectiveness of commonly used computational and analytical tools in predicting these conditions, this study presents a set of shadowgraph images of flow inside a large-scale air ejector and compares them to both computational and first-principles-based analytical models of the same flow. The computational simulations used for comparison apply k-ε renormalization group (RNG) and k-ω shear stress transport (SST) turbulence models to two-dimensional (2D), locally refined rectangular meshes for ideal gas air flow. A complementary analytical model is constructed from first principles to approximate the ejector flow field. Results show that on-design ejector operation is predicted with reasonable accuracy, but accuracy with the same models is not adequate at off-design conditions. Exploration of local flow features shows that the k-ω SST model predicts the location of flow features, as well as global inlet mass flow rates, with greater accuracy. The first-principles model demonstrates a method for resolving the ejector flow field from relatively little visual data and shows the evolving importance of mixing, momentum, and heat exchange with the suction flow with distance from the motive nozzle exit. Such detailed global and local exploration of ejector flow helps guide the selection of appropriate turbulence models for future ejector design purposes, predicts locations of important flow phenomena, and allows for more efficient ejector design and operation.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2134
Author(s):  
Frank Plua ◽  
Victor Hidalgo ◽  
P. Amparo López-Jiménez ◽  
Modesto Pérez-Sánchez

The present research depicts an analysis of the implementation of computational fluid dynamics (CFD) in the study of pumps such as turbines and PATs. To highlight the benefits of CFDs for PAT studies, results from both experimental tests have been compared to better understand the reproduction error phenomena. For this, data analysis used in successful models has been applied to determine variables and parameters, and to report a low relative error. The results show that most of the studies focused on fixed speed rotation with some cases of variable speed rotation. Furthermore, there is not enough information in the academic literature for PAT of axial and mixed flows with fixed and variable speed. Finally, turbulence models based on Reynolds average Navier–Stokes (RANS) have been used to simulate PATs with fixed speed rotation in most cases.


2002 ◽  
Vol 124 (2) ◽  
pp. 550-554 ◽  
Author(s):  
Charles Meneveau and ◽  
Joseph Katz

A procedure for modeling deterministic stresses for average-passage simulations of flow in multiple blade-row turbomachines is proposed and tested. This method uses the results of several (two or more) steady Reynolds-averaged Navier-Stokes (RANS) simulations with boundary conditions that are representative of different inflow conditions encountered during the passage of a neighboring blade-row. The deterministic stresses are calculated by averaging the steady results while weighting them with the approximate duration of each inflow condition. This approach incorporates important rotor-stator interactions that are neglected in models based on a swept-wake approximation. The model is tested successfully by computing the deterministic stresses in the stator vane passage of a centrifugal pump, and comparing them with direct measurements using PIV data. Remaining discrepancies between model predictions and experimental data are probably linked to the inability of the turbulence models to account for flow phenomena at each phase, such as mid-vane separation.


Author(s):  
Afaque Shams ◽  
Nicolas Edh ◽  
Kristian Angele

This article reports a CFD-benchmark with the purpose of validating different turbulence modelling approaches for the transient heat transfer due to mixing of hot and cold flow in a T-junction including the wall. This validation exercise has been carried out within the MOTHER project. In the framework of the project, new experiments were performed with a novel measurement sensor allowing the measurements of the fluctuating wall temperature inside the solid pipe wall. The tests were performed for two different Reynolds numbers (Re) 40000 and 60000 and for two different T-junction geometries; a sharp corner and a round corner. The present article reports the synthesis of the CFD validation for a sharp corner T-junction for Re = 40 000. The CFD validation study has been performed using four different CFD softwares, namely STAR-CCM+, Code_Saturne, LESOCC2 and Fluent. In addition, five different turbulence models i.e. wall-function Large Eddy Simulation (LES), Deatched Eddy Simulation (DES), Partially Resolved Numerical Simulation (PRNS), Unsteady Reynolds Averaged Navier-Stokes URANS and RANS were used to perform the CFD computations. The validation exercise has shown that LES gives the best agreement with the experimental data followed by hybrid (LES/RANS), URANS and RANS models, respectively. The velocity and the thermal fields in the fluid region are correctly predicted by the proper use of the LES modelling, whereas, the accurate prediction of the thermal field in the solid requires very long sampling time in order to achieve a statistically converged solution, which of course requires an enormous computational power. Therefore, the statistical convergence of the thermal field in the solid has been found to be a bottleneck in order to accurately predict the temperature fluctuations in the wall. However, measuring the small amplitude temperature fluctuations is also associated with an uncertainty so the disagreement between CFD and measurements (of the order of 10 %) can also be attributed, in part, to uncertainties in the measurements.


2005 ◽  
Vol 73 (3) ◽  
pp. 405-412 ◽  
Author(s):  
Hermann F. Fasel ◽  
Dominic A. von Terzi ◽  
Richard D. Sandberg

A flow simulation Methodology (FSM) is presented for computing the time-dependent behavior of complex compressible turbulent flows. The development of FSM was initiated in close collaboration with C. Speziale (then at Boston University). The objective of FSM is to provide the proper amount of turbulence modeling for the unresolved scales while directly computing the largest scales. The strategy is implemented by using state-of-the-art turbulence models (as developed for Reynolds averaged Navier-Stokes (RANS)) and scaling of the model terms with a “contribution function.” The contribution function is dependent on the local and instantaneous “physical” resolution in the computation. This physical resolution is determined during the actual simulation by comparing the size of the smallest relevant scales to the local grid size used in the computation. The contribution function is designed such that it provides no modeling if the computation is locally well resolved so that it approaches direct numerical simulations (DNS) in the fine-grid limit and such that it provides modeling of all scales in the coarse-grid limit and thus approaches a RANS calculation. In between these resolution limits, the contribution function adjusts the necessary modeling for the unresolved scales while the larger (resolved) scales are computed as in large eddy simulation (LES). However, FSM is distinctly different from LES in that it allows for a consistent transition between RANS, LES, and DNS within the same simulation depending on the local flow behavior and “physical” resolution. As a consequence, FSM should require considerably fewer grid points for a given calculation than would be necessary for a LES. This conjecture is substantiated by employing FSM to calculate the flow over a backward-facing step and a plane wake behind a bluff body, both at low Mach number, and supersonic axisymmetric wakes. These examples were chosen such that they expose, on the one hand, the inherent difficulties of simulating (physically) complex flows, and, on the other hand, demonstrate the potential of the FSM approach for simulations of turbulent compressible flows for complex geometries.


Sign in / Sign up

Export Citation Format

Share Document