Buckling Analysis of a Taper-Taper Adhesive-Bonded Composite Joint

Author(s):  
Jack E. Helms ◽  
Guoqiang Li ◽  
Su-Seng Pang

An analytical model of the behavior of an adhesive-bonded taper-taper composite joint under axial compressive loading has been developed using the Ritz Method. The model was based on laminated beam theory. A Fourier series was used to represent the transverse displacement variable and the Ritz method was used to derive an eigenvalue equation for adhesively bonded taper-taper composite joint. The smallest eigenvalue is the critical buckling load. Finite element analyses were performed on two unidirectional laminated beam joints with various taper angles to verify the analytical model. The effect of varying the taper angle, adhesive thickness and adhesive modulus on the critical buckling load were investigated analytically.

Author(s):  
Weigang Fu ◽  
Bin Wang

Perforated plates are widely used in thin-walled engineering structures, for example, for lightweight designs of structures and access for installation. For the purpose of analysis, such perforated plates with two opposite free edges might be considered as a series of successive Timoshenko beams. A new semi-analytical model was developed in this study using the Timoshenko shear beam theory for the critical buckling load of perforated plates, with the characteristic equations derived. Results of the proposed modelling were compared with those obtained by FEM and show good agreement. The influence of the dividing number of the successive beams on the accuracy of the critical buckling load was studied with respect to various boundary conditions. And the effect of geometrical parameters, such as the aspect ratio, the thickness-to-width ratio and the cutout-to-width ratio were also investigated. The study shows that the proposed semi-analytical model can be used for buckling analysis of a perforated plate with opposite free edges with the capacity to consider the shear effect in thick plates.


2016 ◽  
Vol 710 ◽  
pp. 357-362
Author(s):  
Irene Scheperboer ◽  
Evangelos Efthymiou ◽  
Johan Maljaars

Aluminium plates containing a single hole or multiple holes in a row are recently becoming very popular among architects and consultant engineers in many constructional applications, due to their reduced weight, as well as facilitating ventilation and light penetration of the buildings. However, there are still uncertainties concerning their structural behaviour, preventing them from wider utilization. In the present paper, local buckling phenomenon of perforated aluminium plates has been studied using the finite element method. For the purposes of the research work, plates with simply supported edges in the out-of-plane direction and subjected to uniaxial compression are examined. In view of perforations, circular cut-outs and the total cut-out size has been varied between 5 and 40% of the total plate area. Moreover, different perforation patterns have been investigated, from a single, central cut-out to a more refined pattern consisting of up to 25 holes equally distributed over the plate. Regarding the material characteristics, several aluminium alloys are considered and compared to steel grade A36 on plates of different slenderness. For each case the critical (Euler) buckling load and the ultimate resistance has been determined.A study into the boundary conditions of the plate showed that the restrictions at the edges parallel to the load direction have a large influence on the critical buckling load. Restraining the top or bottom edge does not significantly influence the resistance of the plate.The results showed that the ultimate resistance of aluminium plates containing multiple holes occurs at considerably larger out-of-plane displacement as that of full plates. For very large total cut-out, a plate containing a central hole has a larger resistance than a plate with equal cut-out percentage but with multiple holes. The strength and deformation in the post-critical regime, i.e. the difference between the critical buckling load and the ultimate resistance, differs significantly for different number of holes and cut-out percentage.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Mohammad Hossein Sharifan ◽  
Mohsen Jabbari

Abstract In this paper, mechanical buckling analysis of a functionally graded (FG) elliptical plate, which is made up of saturated porous materials and is resting on two parameters elastic foundation, is investigated. The plate is subjected to in-plane force and mechanical properties of the plate assumed to be varied through the thickness of it according to three different functions, which are called porosity distributions. Since it is assumed that the plate to be thick, the higher order shear deformation theory (HSDT) is employed to analyze the plate. Using the total potential energy function and using the Ritz method, the critical buckling load of the plate is obtained and the results are verified with the simpler states in the literature. The effect of different parameters, such as different models of porosity distribution, porosity variations, pores compressibility variations, boundary conditions, and aspect ratio of the plate, is considered and has been discussed in details. It is seen that increasing the porosity coefficient decreases the stiffness of the plate and consequently the critical buckling load will be reduced. Also, by increasing the pores' compressibility, the critical buckling load will be increased. Adding the elastic foundation to the structure will increase the critical buckling load. The results of this study can be used to design more efficient structures in the future.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1326 ◽  
Author(s):  
Subrat Kumar Jena ◽  
Snehashish Chakraverty ◽  
Francesco Tornabene

In the present investigation, the buckling behavior of Euler–Bernoulli nanobeam, which is placed in an electro-magnetic field, is investigated in the framework of Eringen’s nonlocal theory. Critical buckling load for all the classical boundary conditions such as “Pined–Pined (P-P), Clamped–Pined (C-P), Clamped–Clamped (C-C), and Clamped-Free (C-F)” are obtained using shifted Chebyshev polynomials-based Rayleigh-Ritz method. The main advantage of the shifted Chebyshev polynomials is that it does not make the system ill-conditioning with the higher number of terms in the approximation due to the orthogonality of the functions. Validation and convergence studies of the model have been carried out for different cases. Also, a closed-form solution has been obtained for the “Pined–Pined (P-P)” boundary condition using Navier’s technique, and the numerical results obtained for the “Pined–Pined (P-P)” boundary condition are validated with a closed-form solution. Further, the effects of various scaling parameters on the critical buckling load have been explored, and new results are presented as Figures and Tables. Finally, buckling mode shapes are also plotted to show the sensitiveness of the critical buckling load.


2012 ◽  
Vol 59 (4) ◽  
pp. 413-434 ◽  
Author(s):  
Jafar Eskandari Jam ◽  
Esmail Asadi

In this paper, the authors investigate a cylindrical shell reinforced by carbon nanotubes. The critical buckling load is calculated using analytical method when it is subjected to compressive axial load. The Mori-Tanaka method is firstly utilized to estimate the effective elastic modulus of composites having aligned oriented straight CNTs. The eigenvalues of the problem are obtained by means of an analytical approach based on the optimized Rayleigh-Ritz method. There is presented a study on the effects of CNTs volume fraction, thickness and aspect ratio of the shell, CNTs orientation angle, and the type of supports on the buckling load of cylindrical shells. Furthermore the effect of CNTs agglomeration is investigated when CNTs are dispersed none uniformly in the polymer matrix. It is shown that when the CNTs are arranged in 90_ direction, the highest critical buckling load appears. Also, the results are plotted for different longitudinal and circumferential mode numbers. There is a specific value for aspect ratio of the cylinder that minimizes the buckling load. The results reveal that for very low CNTs volume fractions, the volume fraction of inclusions has no important effect on the critical buckling load.


2020 ◽  
Vol 20 (03) ◽  
pp. 2050033
Author(s):  
Ji Zhou ◽  
Duanwei Shi ◽  
Chengyun Di ◽  
Yang Zhang ◽  
Xionghao Cheng

The existing critical buckling load calculation methods of horizontal hydraulic cylinder failed to fully reflect the initial boundary conditions and some critical influence factors, resulting in an unjustified critical buckling load. A new method to analyze the buckling behavior of the horizontal hydraulic cylinder articulated at both supports is developed on basis of large deflection theory and Timoshenko beam theory. Friction at supports, self-weight and initial misalignment by clearances are taken into account. Friction moments of supports are built according to Hertz contact theory. Bending stiffness of cylinder-rod junction is figured out in terms of elastic deformation theory. Runge–Kutta and Newton–Raphson method are used in numerical calculation for the critical buckling load. Practical calculation and stability test are carried out to verify the necessity of considering large deflection and shear effect in the proposed method. Experimental work shows the critical buckling load by the proposed method can well match to that by stability test with 0.55% deviation. Moreover, the numerical calculation results demonstrate that the friction moment of the support at piston rod end is crucial for the buckling behavior. The critical buckling load rises increasingly as the friction coefficient [Formula: see text] rises. As the friction coefficients [Formula: see text] increases from 0 to 0.020, the rise rate of critical buckling load increases from 1.782% to 8.055% per 0.001. And the clearance at cylinder-rod junction is a minor factor on the critical buckling load. As the clearances increase by 10 times, the critical buckling load decreases by 3.542%.


2004 ◽  
Vol 13 (5) ◽  
pp. 096369350401300 ◽  
Author(s):  
Nicholas G. Tsouvalis ◽  
Vassilios J. Papazoglou

Non-dimensional design buckling curves for clamped rectangular orthotropic plates are presented in this study. These curves provide the critical buckling load of thin, symmetric, cross-ply laminated plates as a function of the laminate's rigidities and aspect ratio for the following seven configurations of the applied in-plane loads: uniform uniaxial compression, triangular uniaxial compression, uniaxial in-plane bending, pure shear, uniform uniaxial compression combined with shear, triangular uniaxial compression combined with shear, and uniaxial in-plane bending combined with shear. Approximate mathematical formulae are also provided. The Classical Lamination Theory, in conjunction with the Rayleigh-Ritz method, has been used for the determination of the critical buckling load. The validity of the study is confirmed by comparing its results with other both theoretical and numerical ones.


2014 ◽  
Vol 607 ◽  
pp. 55-61 ◽  
Author(s):  
Ghasem Ghadyani ◽  
Mojtaba Akbarzade ◽  
Andreas Öchsner

In this paper, two different beam elements (i.e. according to the Bernoulli beam and Timoshenko beam theory) for the modeling of the behavior of carbon nanotubes are applied. Finite element models are developed for this study with variation of chirality for both zig-zag and armchair configurations of CNTs. The deformations from the finite element simulations are subsequently used to predict the elastic stiffness and the critical buckling load in terms of material and geometric parameters. Furthermore, the dependence of mechanical properties on the kind of beam element and the mesh density is also compared. Based on the obtained results, Youngs modulus and critical buckling load of structures using Timoshenko beams are clearly lower than the Bernoulli beam approach for all chiralities.


2017 ◽  
Vol 103 ◽  
pp. 343-357 ◽  
Author(s):  
S.K. Georgantzinos ◽  
S. Markolefas ◽  
G.I. Giannopoulos ◽  
D.E. Katsareas ◽  
N.K. Anifantis

Sign in / Sign up

Export Citation Format

Share Document