High Order Slip and Thermal Creep Effects in Micro Channel Natural Convection

Author(s):  
Hamid Niazmand ◽  
Behnam Rahimi

Developing natural convection gaseous flows in an open-ended parallel plate vertical microchannel with isothermal wall conditions are numerically investigated to analyze the rarefaction effects on heat transfer and flow characteristics in slip flow regime. The Navier-Stokes and energy equations are solve by a control volume technique subject to higher-order temperature jump and velocity slip conditions including thermal creep effects. The flow and thermal fields in the entrance and fully developed regions along with the axial variations of velocity slip, temperature jump, and heat transfer rates are examined in detail. It is found that rarefaction effects significantly influence the flow and thermal fields such that mass flow and heat transfer rates are increased considerably as compared to the continuum regime. Furthermore, thermal creep contribution to the velocity slip is found to be dominant close to the channel inlet and vanishes in the fully developed region, while velocity slip approaches a finite value there. Both Mass flow rate and thermal entrance length increase with increasing Knudsen number in slip flow regime.

2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Mete Avcı ◽  
Orhan Aydın

In this study, fully developed mixed convective heat transfer of a Newtonian fluid in a vertical microannulus between two concentric microtubes is analytically investigated by taking the velocity slip and the temperature jump at the wall into account. The effects of the mixed convection parameter Gr/Re, the Knudsen number Kn, and the aspect ratio r* on the microchannel hydrodynamic and thermal behaviors are determined. Finally, a Nu=f(Gr∕Re,Kn,r*) expression is developed. It is disclosed that increasing Gr/Re enhances heat transfer while rarefaction effects considered by the velocity slip and the temperature jump in the slip flow regime decreases it.


2011 ◽  
Vol 134 (2) ◽  
Author(s):  
Stéphane Colin

Accurate modeling of gas microvection is crucial for a lot of MEMS applications (microheat exchangers, pressure gauges, fluidic microactuators for active control of aerodynamic flows, mass flow and temperature microsensors, micropumps, and microsystems for mixing or separation for local gas analysis, mass spectrometers, vacuum, and dosing valves…). Gas flows in microsystems are often in the slip flow regime, characterized by a moderate rarefaction with a Knudsen number of the order of 10−2–10−1. In this regime, velocity slip and temperature jump at the walls play a major role in heat transfer. This paper presents a state of the art review on convective heat transfer in microchannels, focusing on rarefaction effects in the slip flow regime. Analytical and numerical models are compared for various microchannel geometries and heat transfer conditions (constant heat flux or constant wall temperature). The validity of simplifying assumptions is detailed and the role played by the kind of velocity slip and temperature jump boundary conditions is shown. The influence of specific effects, such as viscous dissipation, axial conduction and variable fluid properties is also discussed.


Author(s):  
Ste´phane Colin

Accurate modeling of gas microvection is crucial for a lot of MEMS applications (micro-heat exchangers, pressure gauges, fluidic microactuators for active control of aerodynamic flows, mass flow and temperature micro-sensors, micropumps and microsystems for mixing or separation for local gas analysis, mass spectrometers, vacuum and dosing valves…). Gas flows in microsystems are often in the slip flow regime, characterized by a moderate rarefaction with a Knudsen number of the order of 10−2–10−1. In this regime, velocity slip and temperature jump at the walls play a major role in heat transfer. This paper presents a state of the art review on convective heat transfer in microchannels, focusing on rarefaction effects in the slip flow regime. Analytical and numerical models are compared for various microchannel geometries and heat transfer conditions (constant heat flux or constant wall temperature). The validity of simplifying assumptions is detailed and the role played by the kind of velocity slip and temperature jump boundary conditions is shown. The influence of specific effects, such as viscous dissipation, axial conduction and variable fluid properties is also discussed.


2005 ◽  
Vol 127 (9) ◽  
pp. 1053-1056 ◽  
Author(s):  
Cha’o-Kuang Chen ◽  
Huei Chu Weng

It is highly desirable to understand the fluid flow and the heat transfer characteristics of buoyancy-induced micropump and microheat exchanger in microfluidic and thermal systems. In this study, we analytically investigate the fully developed natural convection in an open-ended vertical parallel-plate microchannel with asymmetric wall temperature distributions. Both of the velocity slip and the temperature jump conditions are considered because they have countereffects both on the volume flow rate and the heat transfer rate. Results reveal that in most of the natural convection situations, the volume flow rate at microscale is higher than that at macroscale, while the heat transfer rate is lower. It is, therefore, concluded that the temperature jump condition induced by the effects of rarefaction and fluid-wall interaction plays an important role in slip-flow natural convection.


Author(s):  
H. D. Madhawa Hettiarachchi ◽  
Mihajlo Golubovic ◽  
William M. Worek

Slip-flow and heat transfer in rectangular microchannels are studied numerically for constant wall temperature (T) and constant wall heat flux (H2) boundary conditions under thermally developing flow. Navier-Stokes and energy equations with velocity slip and temperature jump at the boundary are solved using finite volume method in a three dimensional cartesian coordinate system. A modified convection-diffusion coefficient at the wall-fluid interface is defined to incorporate the temperature-jump boundary condition. Validity of the numerical simulation procedure is stabilized. The effect of rarefaction on heat transfer in the entrance region is analyzed in detail. The velocity slip has an increasing effect on the Nusselt (Nu) number whereas temperature jump has a decreasing effect, and the combined effect could result increase or decrease in the Nu number. For the range of parameters considered, there could be high as 15% increase or low as 50% decrease in fully developed Nu is plausible for T thermal boundary condition while it could be high as 20% or low as 35% for H2 thermal boundary condition.


Author(s):  
Vlasios Leontidis ◽  
Lucien Baldas ◽  
Stéphane Colin

Nowadays, modeling gas flows in the slip flow regime through microchannels can be achieved using commercial Computational Fluid Dynamics codes. In this regime the Navier-Stokes equations with appropriate boundary conditions are still valid. A simulation procedure has been developed for the modeling of thermal creep flow using ANSYS Fluent®. The implementation of the boundary conditions is achieved by developing User Defined Functions (UDFs) by means of C++ routines. The complete first order velocity slip boundary condition, including the thermal creep effects due to an axial temperature gradient and the effect of the wall curvature, and the temperature jump boundary condition are applied. Motivation of the present work is the development of a simulation tool which will help in the pre-calculations and the preliminary design of a Knudsen micropump consisting of successively connected curved and straight channels and in a second step in the numerical optimization of the pump, in terms of geometrical parameters and operating conditions of the system.


2013 ◽  
Vol 24 (08) ◽  
pp. 1350054 ◽  
Author(s):  
ALI AMIRI-JAGHARGH ◽  
HAMID NIAZMAND ◽  
METIN RENKSIZBULUT

The effects of thermal creep on the development of gaseous fluid flow and heat transfer in rectangular microchannels with constant wall temperature are investigated in the slip-flow regime. Thermal creep arises from tangential temperature gradients, which may be significant in the entrance region of channels, and affects the velocity and temperature fields particularly in low Reynolds number flows. In the present work, the Navier–Stokes and energy equations coupled with velocity-slip and temperature-jump conditions applied at the channel walls are solved numerically using a control-volume technique. Despite the constant wall temperature, tangential temperature gradients form in the gas layer adjacent to the wall due to the temperature-jump condition. The effects of slip/jump and thermal creep on the flow patterns and parameters are studied in detail for a wide range of channel aspect ratios and, Knudsen and Reynolds numbers. Furthermore, the effects of variable properties on velocity-slip and, friction and heat transfer coefficients are also examined.


2021 ◽  
Vol 28 (2) ◽  
pp. 20-28
Author(s):  
B. Aina

The effect of thermal radiation on steady fully developed natural convection flow in a vertical micro-channel is presented in this article. Effects of velocity slip and temperature jump conditions are taken into account due to their counter effects on both the volume flow rate and the rate of heat transfer. Due to the presence of thermal radiation, the momentum and energy equations are coupled system of ordinary differential equations. Governing coupled nonlinear equations are solved analytically by employing the perturbation analysis method to obtain an expression for fluid temperature, fluid velocity, rate of heat transfer and skin friction on the microchannel walls. The effect of various parameters controlling the physical situation such as thermal radiation, temperature difference, Knudsen number, and fluid wall interaction are discussed with the aid of line graphs and Tables. Results indicate that both velocity and temperature enhanced with the increase of the thermal radiation parameter. Keywords: Thermal radiation, Natural convection, Micro-channel, Velocity slip, Temperature jump


Author(s):  
C. B. Sobhan ◽  
Muhsin M. Ameen ◽  
Praveen P. Abraham

A numerical investigation of natural convection heat transfer from a rectangular fin array of microscale dimensions, where a “down and up” flow pattern occurs, is carried out. The stream function vorticity formulation is used in the analysis and the governing equations of the transient two dimensional field are solved using an explicit finite difference scheme. The dimensions of the domain are such that the problem falls under the slip flow regime. The non continuum effects are modeled through Maxwell’s velocity slip and Smoluchowski’s temperature jump boundary conditions. The steady state velocity and temperature distributions in the field are obtained by marching through the transient state. The average heat transfer coefficient and the Nusselt Number are calculated. The influence of the fin spacing, fin height and operating pressure on the performance of the fin array is studied through parametric studies and some conclusions are drawn regarding the significance of non continuum effects in the micro scale dimensions considered.


2017 ◽  
Vol 95 (5) ◽  
pp. 440-449 ◽  
Author(s):  
Qianfang Liu ◽  
Jing Zhu ◽  
Bandar Bin-Mohsin ◽  
Liancun Zheng

Nanofluid slip flow with distinct solid particles past a wedge with convective surface and high order slip is discussed in this paper. The wedge model is modified by considering the effects of Brownian motion and thermophphoresis together with the high order velocity slip and temperature jump. In this study, the governing fundamental equations are first transformed into third-order ordinary differential equations and solved by using the homotopy analysis method (HAM). Through error analysis and comparison with previous research, the effectiveness of HAM is ascertained, and the crucial influence of nanoparticles and high-order slip on the fluid skin-friction coefficient and heat transfer coefficient is analyed. Thermophphoresis parameter and suction/injection parameter are found to cause an increase in velocity and temperature. The rate of heat transfer in the Cu–water nanofluid is found to be higher than the others.


Sign in / Sign up

Export Citation Format

Share Document