Multi-Dimensional CFD Analysis of Rotating Blades in a Lawnmower Deck

Author(s):  
P. A. Hagen ◽  
W. Chon ◽  
R. S. Amano

Aerodynamic experimentation and investigation of rotating blades has pioneered the research necessary for innovative lawnmower design. In this study, Computational Fluid Dynamics (CFD) models are generated for single and triple-blade arrangements to analyze their flow patterns and behavior. For the 2-D CFD analysis, blade profiles at several arbitrary radial sections have been selected for flow computations around the blade model. Likewise, the 3-D CFD analysis effectively simulates the flow patterns inside the entire triple-blade mower deck, as well as in single-blade enclosures. The accuracy of the attained CFD solutions was determined through comparison with experimental data. The flow behaviors were observed using both Laser Doppler Velocimetry (LDV) and a high-speed video camera recording at 2000 frames per second. Strain gage and pressure transducer analysis also aided in the correlative effort. It has been observed that both the mower deck configuration and blade profile share equal significance in the resultant flow profiles.

2010 ◽  
Vol 437 ◽  
pp. 189-193 ◽  
Author(s):  
Yoji Umezaki ◽  
Syuhei Kurokawa ◽  
Yasutsune Ariura

The transient phenomenon of chip generations and behavior in the gear hobbing process are investigated by using a high-speed video camera. The chip behavior generated in gear finish hobbing process is very complicated and one can not identify each chip from specified cutting edges. The authors have built up a new simulation method of the hobbing process using a flying tool and a special-shaped workpiece, which consists of one tooth space. Visual evidences of the chip interference on the rake face and some conditions of contact between generated chips and the work surface were visually obtained. In the case of dry cutting conditon with a high-speed steel (HSS) flytool without coating on the rake face, the flytool cuts the workpiece frequently with the stuck chip generated in the previous revolution on the rake face. The newly generated chip pushes out the previous stuck chip, which flies away eventually. The chip flow on the rake face interferes strongly at the corner of the cutting edge when both top and side cutting edges produce different chips at the same time, and the chips flow out in changing the shape. The moving speed of the chip was also measured.


Author(s):  
M. Kobayashi ◽  
H. Ogata ◽  
T. Oda ◽  
R. Matsuyama ◽  
A. Horikawa ◽  
...  

KHI (Kawasaki heavy industries Ltd, Japan) and JAXA (Japan Aerospace Exploration Agency) have been working together since 2004 to improve lean staged concentric fuel injector technologies. One of the weak points of a lean staged fuel injector is said to be ignition / light around performance. Ignition characteristics were assessed on several fuel injector configurations in burner tests. Laser diagnosis, CFD analysis and high-speed video camera recording were used to understand the effect of fuel injector geometry on fuel spray distribution and ignition characteristics. They showed a clear relationship between the burner geometry and ignition characteristics. Light around characteristics was evaluated with the burner configuration optimized in burner tests. Light around performance deteriorated in multi sector unit compared to that in burner test. CFD analysis and some ignition tests with different configuration of combustor gave a clue to restore the light around characteristics deteriorated in multi sector unit.


Author(s):  
Junichi Ohara ◽  
Shigeru Koyama ◽  
Ken Kuwahara

In the present study, the characteristics of heat transfer and flow patterns are experimentally investigated on the falling film evaporation of pure refrigerant HCFC123 in a vertical rectangular minichannel consisting of offset strop fins. The refrigerant liquid is supplied to the channel through 37 holes of a distributor. The liquid flowing down vertically is heated electrically from the rear wall of the channel and evaporated. To observe the flow patterns during the evaporation process directly, a transparent vinyl chloride resin plate is placed as the front wall. The experimental parameters are as follows: the mass velocity G = 28∼70 kg/(m2s), the heat flux q = 20∼50 kW/m2 and the pressure P≈ 100 kPa. It is clarified that the heat transfer coefficient α depends on G and q in the region of vapor quality x ≥ 0.3 while there is little influence of G and q in the region x ≤ 0.3. From the direct observation using a high speed video camera and a digital still camera, flow patterns are classified into five typical ones: plane liquid film, wavy liquid film, liquid film accompanied with dry patch, liquid film accompanied with dripping and liquid film accompanied with mist. Then the relation between heat transfer and flow pattern is clarified. The results of heat transfer characteristics are also compared with some previous correlation equations.


2018 ◽  
Vol 192 ◽  
pp. 02028
Author(s):  
Hassan Zulkifli Abu ◽  
Ibrahim Aniza ◽  
Mohamad Nor Norazman

Small-scale blast tests were carried out to observe and measure the influence of sandy soil towards explosive blast intensity. The tests were to simulate blast impact imparted by anti-vehicular landmine to a lightweight armoured vehicle (LAV). Time of occurrence of the three phases of detonation phase in soil with respect to upward translation time of the test apparatus were recorded using high-speed video camera. At the same time the target plate acceleration was measured using shock accelerometer. It was observed that target plate deformation took place at early stage of the detonation phase before the apparatus moved vertically upwards. Previous data of acceleration-time history and velocity-time history from air blast detonation were compared. It was observed that effects of soil funnelling on blast wave together with the impact from soil ejecta may have contributed to higher blast intensity that characterized detonation in soil, where detonation in soil demonstrated higher plate velocity compared to what occurred in air blast detonation.


2014 ◽  
Vol 782 ◽  
pp. 3-7
Author(s):  
Kenji Shinozaki ◽  
Motomichi Yamamoto ◽  
Kohta Kadoi ◽  
Peng Wen

Solidification cracking during welding is very serious problem for practical use. Therefore, there are so many reports concerning solidification cracking. Normally, solidification cracking susceptibility of material is quantitatively evaluated using Trans-Varestraint test. On the other hand, local solidification cracking strain was tried to measure precisely using in-situ observation method, called MISO method about 30 years ago. Recently, digital high-speed video camera develops very fast and its image quality is very high. Therefore, we have started to observe solidification crack using in site observation method. In this paper, the local critical strain of a solidification crack was measured and the high temperature ductility curves of weld metals having different dilution ratios and different grain sizes to evaluate quantitatively the effects of dilution ratio and grain size on solidification cracking susceptibility by using an improved in situ observation method.


2007 ◽  
Vol 329 ◽  
pp. 761-766 ◽  
Author(s):  
Y. Zhang ◽  
Masato Yoshioka ◽  
Shin-Ichiro Hira

At present, a commercially available magnetic barrel machine equipped with permanent magnets has some faults arising from constructional reason. That is, grinding or finishing ability is different from place to place in the machining region, resulting in the limitation on the region we can use in the container of workpieces. Therefore, in this research, authors made the new magnetic barrel machine equipped with three dimensional (3D) magnet arrangement to overcome these faults. The grinding ability of the new 3D magnetic barrel machine converted was experimentally examined, and compared with that of the traditional magnetic barrel machine. As a result, it was shown that we can use much broader region in the new 3D machine. It was also shown that the grinding ability became higher. The distribution of barrel media in action was recorded by means of a high speed video camera. It was clarified that the media rose up higher and were distributed more uniformly in the container by the effect of the magnet block newly set up. It was supposed that this must be the reason for the above-mentioned improvement of grinding ability.


Author(s):  
P Eriksson ◽  
V Wikström ◽  
R Larsson

In a previous investigation, grease thickener fibres were tracked as they passed through an elastohydrodynamic (EHD) contact in pure rolling using interferometry in a standard ball-and-disc apparatus. In order to capture single thickener fibres, a high-speed video camera was used. Here, the experiments have been repeated introducing different amounts of side slip for different rolling speeds and a faster video camera capable of capturing 4500 frames/s. The contact was lubricated with a continuous supply of grease. Two greases, based on the same synthetic poly(α-olefin) but thickened with Li-12-OH and lithium complex soap respectively, were studied. It was observed that the thickener fibres were stretched both before entering the contact and as they passed through it. Fibres seem to avoid the minimum film thickness regions and, if they enter, the film is restored immediately after passage.


1985 ◽  
Vol 1 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Robert J. Gregor ◽  
Marilyn Pink

As part of an ongoing project to evaluate elite track and field throwers in the United States, the javelin competition was filmed during the 1983 Pepsi Invitational Track Meet. A high-speed video camera (Spin Physics SP2000) was positioned orthogonal to the javelin runway to record the release of all throws. During this competition, Tom Petranoff’s world record (99.72 m) was filmed at 200 fields per second. Subsequent frame-by-frame digitization yielded results consistent with reports in the literature. Release velocity was 32.3 m/s and represents one of the highest values ever reported. Angle of release was .57r, javelin attitude at release was .64r» and angle of attack was .07r. While optimum values for these release parameters, in light of published results, remain open to discussion, the results presented here represent unique information on a world record performance and can serve as a basis of comparison for future performances.


Sign in / Sign up

Export Citation Format

Share Document