Prediction and Improvement of Artificial Ground Freezing

Author(s):  
M. Yokoo ◽  
M. Shibazaki ◽  
H. Yoshida ◽  
H. Souma ◽  
A. Ousaka ◽  
...  

The aim of present study is to establish the numerical model for the solidification or melting of water saturated soil and to clarify the effect of thermal and physical parameters on the artificial soil freezing by comparing between the numerical and experimental results. First, the numerical model has been modified to adapt for freezing of soil. By comparing between obtained numerical solutions and experimental data, the validity of the model has been checked and certified. Next, the effect of physical property of soil, initial and boundary conditions of soil and freezing pipes, the velocity of groundwater, and the arrangement of freezing pipes on soil freezing have been examined. As the results, it was found that the water content of soil and ground water affect the volume of solid, besides the groundwater also especially changes the profile of solid/liquid interface. The rate of the interface growth would gradually stop provided that the flow speed exceeds certain limits. The knowledge obtained from our study will be useful to predict solid volume, decrease in thermal energy consumption and minimize the influence to ambience on artificial ground freezing precisely.

2021 ◽  
Vol 4 (1) ◽  
pp. 453-463
Author(s):  
M. A. Semin ◽  

An important stage in the design of the artificial ground freezing during the construc-tion of mine shafts (and other underground structures) is the simulation of deformation and heat transfer in the media to be frozen. This is necessary to calculate the required thicknesses of frozen wall, the time of its formation and the parameters of freezing stations. The choice of an adequate mathematical model is impossible without analyzing the significance and coupling of various physical processes occurring during the freezing of soil. Such an analysis allows se-lecting a reasonable degree of detailing of physical processes in the model: take into account all important factors and neglect the rest. This article proposes a methodology for analyzing the significance and coupling of such physical processes. For this, a general thermo-hydro-mechanical model of soil freezing has been formulated, a set of dimensionless complexes has been identified and classified, which determine the relationship between various physical pro-cesses. The transition from the general thermo-hydro-mechanical model to simpler models is possible only if the corresponding dimensionless complexes are small.


2021 ◽  
Vol 266 ◽  
pp. 03008
Author(s):  
M.S. Zhelnin ◽  
A.A. Kostina ◽  
O.A. Plekhov ◽  
L.Y. Levin

Artificial ground freezing (AGF) is used worldwide for vertical shaft sinking in difficult hydrogeological conditions. The modern tendency is to determine the design parameters of the freezing technique based on numerical simulation. This work is devoted to the numerical simulation of the formation of an ice-soil wall in the soil stratum due to the AGF and shaft sinking under the protection of the wall. For this purpose, a fully coupled thermo-hydro-mechanical model of soil freezing has been developed on the basis of the theory of poromechanics. The developed model considers important features of the freezing process, such as the phase change, pore water migration due to cryogenic suction, frost heave, and consolidation of the soil. The results have shown that the model allows to predict the distribution of ice content, assess stress and strain in the ice-soil wall, and estimate displacement of the excavation wall.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1322 ◽  
Author(s):  
Rui Hu ◽  
Quan Liu ◽  
Yixuan Xing

For the artificial ground freezing (AGF) projects in highly permeable formations, the effect of groundwater flow cannot be neglected. Based on the heat transfer and seepage theory in porous media with the finite element method, a fully coupled numerical model was established to simulate the changes of temperature field and groundwater flow field. Firstly, based on the classic analytical solution for the frozen temperature field, the model’s ability to solve phase change problems has been validated. In order to analyze the influences of different parameters on the closure time of the freezing wall, we performed the sensitivity analysis for three parameters of this numerical model. The analysis showed that, besides the head difference, the thermal conductivity of soil grain and pipe spacing are also the key factors that control the closure time of the frozen wall. Finally, a strengthening project of a metro tunnel with AGF method in South China was chosen as a field example. With the finite element software COMSOL Multiphysics® (Stockholm, Sweden), a three-dimensional (3D) numerical model was set up to simulate the change of frozen temperature field and groundwater flow field in the project area as well as the freezing process within 50 days. The simulation results show that the freezing wall appears in an asymmetrical shape with horizontal groundwater flow normal to the axial of the tunnel. Along the groundwater flow direction, freezing wall forms slowly and on the upstream side the thickness of the frozen wall is thinner than that on the downstream side. The actual pipe spacing has an important influence on the temperature field and closure time of the frozen wall. The larger the actual pipe spacing is, the slower the closing process will be. Besides this, the calculation for the average temperature of freezing body (not yet in the form of a wall) shows that the average temperature change of the freezing body coincides with that of the main frozen pipes with the same trend.


2016 ◽  
Vol 11 (2) ◽  
pp. 150-155
Author(s):  
R. Troian ◽  
D. Dragna ◽  
C. Bailly ◽  
M.-A. Galland

Modeling of acoustic propagation in a duct with absorbing treatment is considered. The surface impedance of the treatment is sought in the form of a rational fraction. The numerical model is based on a resolution of the linearized Euler equations by finite difference time domain for the calculation of the acoustic propagation under a grazing flow. Sensitivity analysis of the considered numerical model is performed. The uncertainty of the physical parameters is taken into account to determine the most influential input parameters. The robustness of the solution vis-a-vis changes of the flow characteristics and the propagation medium is studied.


Author(s):  
Виктор Григорьевич Чеверев ◽  
Евгений Викторович Сафронов ◽  
Алексей Александрович Коротков ◽  
Александр Сергеевич Чернятин

Существуют два основных подхода решения задачи тепломассопереноса при численном моделировании промерзания грунтов: 1) решение методом конечных разностей с учетом граничных условий (границей, например, является фронт промерзания); 2) решение методом конечных элементов без учета границ модели. Оба подхода имеют существенные недостатки, что оставляет проблему решения задачи для численной модели промерзания грунтов острой и актуальной. В данной работе представлена физическая постановка промерзания, которая позволяет создать численную модель, базирующуюся на решении методом конечных элементов, но при этом отражающую ход фронта промерзания - то есть модель, в которой объединены оба подхода к решению задачи промерзания грунтов. Для подтверждения корректности модели был проделан ряд экспериментов по физическому моделированию промерзания модельного грунта и выполнен сравнительный анализ полученных экспериментальных данных и результатов расчетов на базе представленной численной модели с такими же граничными условиями, как в экспериментах. There are two basic approaches to solving the problem of heat and mass transfer in the numerical modeling of soil freezing: 1) using the finite difference method taking into account boundary conditions (the boundary, for example, is the freezing front); 2) using the finite element method without consideration of model boundaries. Both approaches have significant drawbacks, which leaves the issue of solving the problem for the numerical model of soil freezing acute and up-to-date. This article provides the physical setting of freezing that allows us to create a numerical model based on the solution by the finite element method, but at the same time reflecting the route of the freezing front, i.e. the model that combines both approaches to solving the problem of soil freezing. In order to confirm the correctness of the model, a number of experiments on physical modeling of model soil freezing have been performed, and a comparative analysis of the experimental data obtained and the calculation results based on the provided numerical model with the same boundary conditions as in the experiments was performed.


Author(s):  
Ahmad F. Zueter ◽  
Minghan Xu ◽  
Mahmoud A. Alzoubi ◽  
Agus P. Sasmito

Abstract Building concentric tubes is one of biggest practical challenges in the construction of freeze-pipes of artificial ground freezing (AGF) applications for deep underground mines. In this study, the influence of tubes eccentricity on phase-front expansion (i.e., expansion of the frozen body) and energy consumption of AGF systems is analyzed. A 1+1D semi-conjugate model that solves two-phase transient energy conservation equation is derived. The model is firstly validated against experimental data and then verified with a fully-conjugate model from the literature. After that, the model is extended to a field scale of typical deep underground mines to study freeze-pipe eccentricity. The results show that an eccentric freeze pipe can reduce the phase-front expansion by around 25%, as compared with a concentric one. Also, the geometrical profile of the phase-front is significantly influenced by the freeze-pipe eccentricity. Furthermore, in the passive zone, where AGF coolants are isolated from the ground to reduce energy consumption, freeze pipe eccentricity can increase the coolant heat gain by 10%. This percentage can increase up to 200% if radiation heat transfer is minimized.


Sign in / Sign up

Export Citation Format

Share Document