A Numerical Study of Turbulent Flow in Helical Static Mixers

2006 ◽  
Author(s):  
Ramin K. Rahmani ◽  
Anahita Ayasoufi ◽  
Theo G. Keith

Many processing applications call for the addition of small quantities of chemicals to working fluid. Hence, fluid mixing plays a critical role in the success or failure of these processes. An optimal combination of turbulent dispersion down to eddies of the Kolmogoroff scale and molecular diffusion would yield fast mixing on a molecular scale which in turn favors the desired reactions. Helical static mixers can be used for those applications. The range of practical flow Reynolds numbers for these mixers in industry is usually from very small (Re ∼ 0) to moderate values (Re ∼ 5000). In this study, a helical static mixer is investigated numerically using Lagrangian methods to characterize mixer performance under turbulent flow regime conditions. A numerical simulation of turbulent flows in helical static mixers is employed. The model solves the three-dimensional, Reynolds-averaged Navier-Stokes equations, closed with the Spalart-Allmaras turbulence model, using a second-order-accurate finite-volume numerical method. Numerical simulations are carried out for a six-element mixer, and the computed results are analyzed to elucidate the complex, three-dimensional features of the flow. Using a variety of predictive tools, mixing results are obtained and the performance of static mixer under turbulent flow condition is studied.

2006 ◽  
Vol 128 (8) ◽  
pp. 769-783 ◽  
Author(s):  
Ramin K. Rahmani ◽  
Theo G. Keith ◽  
Anahita Ayasoufi

In chemical processing industries, heating, cooling, and other thermal processing of viscous fluids are an integral part of the unit operations. Static mixers are often used in continuous mixing, heat transfer, and chemical reactions applications. In spite of widespread usage, the flow physics of static mixers is not fully understood. For a given application, besides experimentation, the modern approach to resolve this is to use powerful computational fluid dynamics tools to study static mixer performance. This paper extends a previous study by the authors on an industrial helical static mixer and investigates heat transfer and mixing mechanisms within a helical static mixer. A three-dimensional finite volume simulation is used to study the performance of the mixer under both laminar and turbulent flow conditions. The turbulent flow cases were solved using k−ω model. The effects of different flow conditions on the performance of the mixer are studied. Also, the effects of different thermal boundary conditions on the heat transfer rate in static mixer are studied. Heat transfer rates for a flow in a pipe containing no mixer are compared to that with a helical static mixer.


2005 ◽  
Vol 127 (3) ◽  
pp. 467-483 ◽  
Author(s):  
Ramin K. Rahmani ◽  
Theo G. Keith ◽  
Anahita Ayasoufi

In many branches of processing industries, viscous liquids need to be homogenized in continuous operations. Consequently, fluid mixing plays a critical role in the success or failure of these processes. Static mixers have been utilized over a wide range of applications such as continuous mixing, blending, heat and mass transfer processes, chemical reactions, etc. This paper describes how static mixing processes of single-phase viscous liquids can be simulated numerically, presents the flow pattern through a helical static mixer, and provides useful information that can be extracted from the simulation results. The three-dimensional finite volume computational fluid dynamics code used here solves the Navier-Stokes equations for both laminar and turbulent flow cases. The turbulent flow cases were solved using k-ω model and Reynolds stress model (RSM). The flow properties are calculated and the static mixer performance for different Reynolds numbers (from creeping flows to turbulent flows) is studied. A new parameter is introduced to measure the degree of mixing quantitatively. Furthermore, the results obtained by k-ω and RSM turbulence models and various numerical details of each model are compared. The calculated pressure drop is in good agreement with existing experimental data.


Volume 4 ◽  
2004 ◽  
Author(s):  
Ramin K. Rahmani ◽  
Theo G. Keith ◽  
Anahita Ayasoufi

Viscous liquids have to be homogenized in continuous operations in many branches of processing industries; and therefore, fluid mixing plays a critical role in the success or failure of many industrial processes. Consequences of improper mixing include non-reproducible processing conditions and lowered product quality, resulting in the need for more elaborate downstream purification processes and increased waste disposal costs. The range of practical flow Reynolds numbers for helical static mixers in industry is usually from very small (Re ≈ 0) to moderate values (e.g. Re = 5,000). However, it has been found that the flow regime within helical static mixers is turbulent for relatively low Reynolds numbers, compared to the flow inside a pipe with no mixing elements present. This paper extends previous studies by the authors on the industrial helical static mixer. Its purpose is to present an improved understanding of the turbulent flow pattern for single-phase liquids through the mixer. Three-dimensional finite volume simulations are used to study the performance of the mixer using different turbulent models. Large-Eddy Simulation (LES) model is applied to the flow in an industrial helical static mixer to calculate the flow velocities, pressure drops, etc. Using a variety of predictive tools, the mixing results are obtained. Also, the accuracy and global performance of several different turbulent models are compared against the LES model.


Author(s):  
Ramin K. Rahmani ◽  
Theo G. Keith ◽  
Anahita Ayasoufi

Viscous liquids have to be homogenized in continuous operations in many branches of processing industries. Consequently, fluid mixing plays a critical role in the success or failure of many industrial processes. The use of static mixers has been utilized over a wide range of applications such as continuous mixing, blending, heat and mass transfer processes, chemical reactions, etc. This paper illustrates how static mixing processes of single-phase viscous liquids can be simulated numerically, and presents the flow pattern of both Newtonian and non-Newtonian single-phase liquids through a helical static mixer, and provides useful information that can be extracted from the simulation results. Three-dimensional finite volume simulations are used to study the performance of the mixer. The CFD code used here solves the Navier-Stokes equations for both laminar and turbulent flow cases. The turbulent flow cases were solved using k–ω and Reynolds Stress models. The flow properties are calculated for both Newtonian and non-Newtonian fluids. The calculated pressure drop is in good agreement with existing experimental data.


Author(s):  
Ramin K. Rahmani ◽  
Theo G. Keith ◽  
Anahita Ayasoufi

Viscous liquids have to be homogenized in continuous operations in many branches of processing industries; and therefore, fluid mixing plays a critical role in the success or failure of many industrial processes. Consequences of improper mixing include non-reproducible processing conditions and lowered product quality, resulting in the need for more elaborate downstream processes and increased costs. The range of practical flow Reynolds numbers for KOMAX static mixers in industry is usually from moderate values (Re ≈ 0) to very large values (e.g. Re ≈ 5,000,000). However, most of industrial applicants have a very small flow to moderate Reynolds numbers (e.g. Re ≈ 5,000). This paper presents an improved understanding of the turbulent flow pattern for single-phase liquids through the mixer. Large-Eddy Simulation (LES) model is applied to the flow in a KOMAX static mixer to calculate the flow velocities, pressure drops, etc. Using a variety of predictive tools, the mixing results are obtained.


Author(s):  
Ramin K. Rahmani ◽  
Theo G. Keith ◽  
Anahita Ayasoufi

In chemical processing industries, heating, cooling and other thermal processing of viscous fluids are an integral part of the unit operations. Static mixers are often used in continuous mixing, heat transfer, and chemical reactions applications. In spite of wide spread usage, the flow physics of static mixers is not fully understood. For a given application, besides experimentation, the modern approach to resolve this is to use powerful computational fluid dynamics (CFD) tools to study static mixer performance. This paper extends a previous study by the authors on an industrial helical static mixer and investigates heat transfer and mixing mechanisms within a helical static mixer. A three-dimensional finite volume simulation is used to study the performance of the mixer. The effects of different flow conditions on the performance of the mixer are studied. Heat transfer rates for a flow in a pipe containing no mixer is compared to that with a helical static mixer.


2005 ◽  
Author(s):  
Ramin K. Rahmani ◽  
Anahita Ayasoufi ◽  
Theo G. Keith

Viscous liquids have to be homogenized in continuous operations in many branches of processing industries; and therefore, fluid mixing plays a critical role in the success or failure of many industrial processes. The use of static mixers has been utilized over a wide range of applications from simple blending to complex chemical reactions. Generally, a static mixer consists of a number of equal stationary units, placed on the inside of a pipe or channel in order to promote mixing of flowing fluid streams. These mixers have low maintenance and operating costs, low space requirements and no moving parts. A range of designs exists for a wide range of specific applications. The shape of the elements determines the character of the fluid motion and thus determines the effectiveness of the mixer. There are several key parameters in the design procedure of a static mixer. Some of the most important ones are: the degree of mixing of working fluids, pressure drop across the mixer, and residence time distribution of fluid elements. An ideal static mixer provides a highly mixed material with low pressure drop and similar traveling history for all fluid elements. To choose a static mixer for a given application or in order to design a new static mixer, besides experimentation, it is possible to use powerful computational fluid dynamics (CFD) tools to study the performance of static mixers. This paper extends previous studies by the authors on industrial static mixers and illustrates how static mixing processes of single-phase viscous liquids can be simulated numerically. Using different measuring tools, the global performance and costs of two static mixers are studied.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Author(s):  
K. M. Akyuzlu ◽  
Y. Pavri ◽  
A. Antoniou

A two-dimensional, mathematical model is adopted to investigate the development of buoyancy driven circulation patterns and temperature contours inside a rectangular enclosure filled with a compressible fluid (Pr=1.0). One of the vertical walls of the enclosure is kept at a higher temperature then the opposing vertical wall. The top and the bottom of the enclosure are assumed insulated. The physics based mathematical model for this problem consists of conservation of mass, momentum (two-dimensional Navier-Stokes equations) and energy equations for the enclosed fluid subjected to appropriate boundary conditions. The working fluid is assumed to be compressible through a simple ideal gas relation. The governing equations are discretized using second order accurate central differencing for spatial derivatives and first order forward finite differencing for time derivatives where the computation domain is represented by a uniform orthogonal mesh. The resulting nonlinear equations are then linearized using Newton’s linearization method. The set of algebraic equations that result from this process are then put into a matrix form and solved using a Coupled Modified Strongly Implicit Procedure (CMSIP) for the unknowns (primitive variables) of the problem. A numerical experiment is carried out for a benchmark case (driven cavity flow) to verify the accuracy of the proposed solution procedure. Numerical experiments are then carried out using the proposed compressible flow model to simulate the development of the buoyancy driven circulation patterns for Rayleigh numbers between 103 and 105. Finally, an attempt is made to determine the effect of compressibility of the working fluid by comparing the results of the proposed model to that of models that use incompressible flow assumptions together with Boussinesq approximation.


Author(s):  
Jean Franc¸ois Sigrist ◽  
Christian Laine ◽  
Dominique Lemoine ◽  
Bernard Peseux

This paper is related to the study of a nuclear propulsion reactor prototype for the French Navy. This prototype is built on ground and is to be dimensioned toward seismic loading. The dynamic analysis takes the coupled fluid structure analysis into account. The basic fluid models used by design engineers are inviscid incompressible or compressible. The fluid can be described in a bidimensional by slice or a three-dimensional approach. A numerical study is carried out on a generic problem for the linear FSI dynamic problem. The results of this study are presented and discussed. As a conclusion, the three-dimensional inviscid incompressible fluid appears to be the best compromise between the description of physical phenomena and the cost of modeling. The geometry of the reactor is such that large displacements of the structure in the fluid can occur. Therefore, the linearity hypothesis might not be longer valid. The case of large amplitude imposed oscillating motion of a cylinder in a confined fluid is numerically studied. A CFD code is used to investigate the fluid behavior solving the NAVIER-STOKES equations. The forces induced on the cylinder by the fluid are computed and compared to the linear solution. The limit of the linear model can then be exhibited.


Sign in / Sign up

Export Citation Format

Share Document