Experimental Study of the Stability of a High-Speed Gas Jet Under the Influence of Liquid Cross-Flow

Author(s):  
Chris Weiland ◽  
Jon Yagla ◽  
Pavlos Vlachos

This paper reports on the interfacial character and deflection of a high-speed gas jet transverse to an aqueous cross-flow as a function of cross-flow speed and gas jet Mach number. Several gas exit velocities were tested including subsonic cases up to supersonic cases at cross-flow velocities from 0.3 m/s to 0.7 m/s. For the subsonic cases, it was found that the stability and resistance of the gas jet to deflect in the presence of cross-flow were increased with the jet Mach number. However, the Mach 1.6 jet was more stable than the Mach 1.9 jet, suggesting that there exists upper and lower bounds for jet stability which are Mach number dependent. Unstable gas jets were shown to pinch-off, meaning the interface of the gas jet in a plane parallel to the ejector exit collapsed to almost a point and an independent bubble rose to the free surface. The stagnation side gas/liquid interfaces were analyzed using the Proper Orthogonal Decomposition (POD) method to better understand the fundamental mode shapes contained in the interface waveforms. It was found that the subsonic jets shared many of the same characteristics in their first, second, and third mode shapes. The supersonic jets differed from the subsonic mode shapes. Interestingly, the mode shapes for the subsonic cases compared well to those of a beam in transverse vibration with sliding-free boundary conditions. The supersonic cases compared relatively well to pinned-free boundary conditions, owing to the more columnar nature of the gas jet as it exited the ejector.

Author(s):  
D. Crimaldi ◽  
R. Singh

Abstract Automotive transmission casing plates of irregular shape, with complex boundary conditions and non-uniform material properties, are experimentally and computationally studied to acquire a fundamental understanding of their dynamic and acoustic radiation characteristics. A modified flat cover is designed which simplifies the geometry while providing uniform thickness and material properties. Both covers (“real-life” and “laboratory”) are studied with free and bolted boundary conditions. In particular, the free boundary conditions are useful because they eliminate the cover-housing interaction allowing for a more detailed analysis of the cover plate. Finite element models for both covers under the free boundary conditions are developed and refined. Predicted natural frequencies and mode shapes are in excellent agreement with measured modal data. Then the finite element models are coupled with boundary element models to predict acoustic radiation properties. Predictions match well with measured acoustic directivity at resonant frequencies.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 461
Author(s):  
Kenta Oishi ◽  
Yoshihiro Shibata

In this paper, we consider the motion of incompressible magnetohydrodynamics (MHD) with resistivity in a domain bounded by a free surface. An electromagnetic field generated by some currents in an external domain keeps an MHD flow in a bounded domain. On the free surface, free boundary conditions for MHD flow and transmission conditions for electromagnetic fields are imposed. We proved the local well-posedness in the general setting of domains from a mathematical point of view. The solutions are obtained in an anisotropic space Hp1((0,T),Hq1)∩Lp((0,T),Hq3) for the velocity field and in an anisotropic space Hp1((0,T),Lq)∩Lp((0,T),Hq2) for the magnetic fields with 2<p<∞, N<q<∞ and 2/p+N/q<1. To prove our main result, we used the Lp-Lq maximal regularity theorem for the Stokes equations with free boundary conditions and for the magnetic field equations with transmission conditions, which have been obtained by Frolova and the second author.


2014 ◽  
Vol 564 ◽  
pp. 176-181
Author(s):  
S.T. Cheng ◽  
Nawal Aswan Abdul Jalil ◽  
Zamir A. Zulkefli

Vibration based technique have so far been focused on the identification of structural damage. However, not many studies have been conducted on the corrosion identification on pipes. The objective of this paper is to identify corrosion on pipes from vibration measurements. A hollow pipe, 500 mm in length with 63.5 mm in diameter was subjected to impact loading using an impact hammer to identify the natural frequency of the tube in two conditions i) without any corrosion and ii) with an induced localized 40 mm by 40 mm corrosion at the middle of the pipe. The shift of natural frequencies of the structures under free boundary conditions was examined for each node of excitation. The results showed that there is a shift in natural frequency of the pipe, between 3 and 4 Hz near to the corrosion area. It can suggested that that the impact vibration is capable of identifying of localized corrosion on a hollow tube.


Author(s):  
Y. Jiang ◽  
N. Gurram ◽  
E. Romero ◽  
P. T. Ireland ◽  
L. di Mare

Slot film cooling is a popular choice for trailing edge cooling in high pressure (HP) turbine blades because it can provide more uniform film coverage compared to discrete film cooling holes. The slot geometry consists of a cut back in the blade pressure side connected through rectangular openings to the internal coolant feed passage. The numerical simulation of this kind of film cooling flows is challenging due to the presence of flow interactions like step flow separation, coolant-mainstream mixing and heat transfer. The geometry under consideration is a cutback surface at the trailing edge of a constant cross-section aerofoil. The cutback surface is divided into three sections separated by narrow lands. The experiments are conducted in a high speed cascade in Oxford Osney Thermo-Fluids Laboratory at Reynolds and Mach number distributions representative of engine conditions. The capability of CFD methods to capture these flow phenomena is investigated in this paper. The isentropic Mach number and film effectiveness are compared between CFD and pressure sensitive paint (PSP) data. Compared to steady k–ω SST method, Scale Adaptive Simulation (SAS) can agree better with the measurement. Furthermore, the profiles of kinetic energy, production and shear stress obtained by the steady and SAS methods are compared to identify the main source of inaccuracy in RANS simulations. The SAS method is better to capture the unsteady coolant-hot gas mixing and vortex shedding at the slot lip. The cross flow is found to affect the film significantly as it triggers flow separation near the lands and reduces the effectiveness. The film is non-symmetric with respect to the half-span plane and different flow features are present in each slot. The effect of mass flow ratio (MFR) on flow pattern and coolant distribution is also studied. The profiles of velocity, kinetic energy and production of turbulent energy are compared among the slots in detail. The MFR not only affects the magnitude but also changes the sign of production.


Sign in / Sign up

Export Citation Format

Share Document