Optimized High-Aspect-Ratio Diffusional Micromixers

Author(s):  
Amit Maha ◽  
Vamsidhar Palaparthy ◽  
Steven A. Soper ◽  
Michael C. Murphy ◽  
Dimitris E. Nikitopoulos

This part of our work has been aimed at designing, manufacturing and characterizing effective micro-mixers which are cheap, durable and easily integrated on a variety of bio-chips with emphasis on those performing Polymerese Chain Reactions (PCR) and Ligase Detection Reactions (LDR). A key contribution is the development of an optimization procedure for the design of passive micro-mixers utilizing high-aspect-ratio micro-channels (HARMC). The optimization procedure identifies the optimum type of mixer on the basis of the flow rate proportions of the mixture constituents and provides for two optimum designs of the selected mixer type for an aspect ratio of choice in two ways: (a) for specified mixture volume and mixer pressure drop the optimum mixer dimensions and operating condition minimize the total production time and (b) for specified mixture volume and a total production time the optimum mixer dimensions and operating condition minimize the mixer pressure drop. The simplest and easiest to manufacture layout of an optimized mixer configuration (X2JC) with two inlet ports and three layers is shown in Figure 1. The injection of compound 1 into the compound 2 main stream is performed through two side-jets in a wider channel to further reduce the pressure loss overhead followed by a contraction into the main mixing channel.

Author(s):  
Metapun Nuntakulamarat ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

Abstract This paper focuses on the measurements of heat transfer enhancement and pressure drop of different pin or fin configurations in a high aspect ratio (AR = 9.57/1.2) channel. Two different pin-fin shapes including circular pins and strip fins were studied. Different pin-fin spacings for circular pins (S/D = 2, 4) and strip fins (S/W = 8, 16) were investigated, respectively. In addition, the thickness effect of the strip fin was included in this study. The regionally averaged heat transfer measurement method was used to acquire the heat transfer coefficients on two opposite featured surfaces within the test channel. For each configuration, the tested Reynolds number was ranging from 20,000 to 80,000. The results indicate that the channel with circular pins has better heat transfer enhancement and higher pressure loss than their strip fins counterparts. However, the strip fins are considered better designs in terms of thermal performance. For the gas turbine designers aim at developing an improved internal cooling feature, this work demonstrates the great potential of the strip fins as a novel and effective cooling design compared with the conventional circular pins.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Xiao Cheng ◽  
Huiying Wu

Abstract The dry-out easily occurs on high-aspect ratio microchannel sidewalls due to the decreasing of liquid film thickness. In this paper, the triangular microgrooves possessing the characteristic of evaporating meniscus were designed on the microchannel sidewalls. The heat sink consisted of 33 parallel microchannels, having a hydraulic diameter of 100 μm and an aspect ratio of 4. A platinum film heater and platinum resistance temperature detectors (RTDs) were integrated on the backside of the heat sink to realize uniform heating and precise temperature measurement, respectively. Flow boiling visualization experiments were carried out by high-speed camera in triangular groove-wall and plain-wall microchannels at mass fluxes of 148–490 kg/m2·s and inlet temperatures of 42 °C and 60 °C. The boiling curve, heat transfer coefficient (HTC), pressure drop, and two-phase flow boiling instability were systematically investigated to assess the flow boiling performances. Thin liquid film was observed in the triangular grooves during the dry-out process, compared to the dry-out in plain-wall microchannels. The oscillations of wall temperature, inlet temperature, and pressure drop were significantly suppressed in triangular groove-wall microchannels. Moreover, the earlier onset of nucleate boiling, improved heat flux, and HTC were realized in triangular groove-wall microchannels compared to plain-wall microchannels. Therefore, triangular groove design on the sidewalls is a promising solution to enhance boiling heat transfer and suppress flow boiling instabilities for high-aspect ratio microchannels.


Author(s):  
S. Naik ◽  
S. Retzko ◽  
M. Gritsch ◽  
A. Sedlov

The trailing edge region of gas turbine blades is generally subjected to extremely high external heat loads due to the combined effects of high mach numbers and gas temperatures. In order to maintain the metal temperatures of these trailing edges to a level, which fulfils both the part mechanical integrity and turbine performance, highly efficient and reliable cooling of the trailing edges is required without increasing the coolant consumption. In this paper, the heat transfer and pressure drop characteristic of three different turbulator designs in a very high aspect ratio passage have been investigated. The turbulator designs included angled and tapered ribs, broken discrete ribs and V-shaped small chevrons ribs. The heat transfer and pressure drop characteristics of all the turbulator configurations was initially investigated via numerical predictions and subsequently in a scaled experimental perspex model. The experimental study was conducted for a range of operational Reynolds numbers and the TLC (thermochromic liquid crystal) method was used to measure the detailed heat transfer coefficients on all surfaces of the passage. Pressure taps were located at several locations within the perspex model and both the local and average heat transfer coefficients and pressure loss coefficients were determined. The measured and predicted results show, that for all cases investigated, the local internal heat transfer coefficient, which is driven by the highly three dimensional passage flows, is highly non-uniformly within the passage. The highest overall average heat transfer was obtained for the angled and tapered turbulator. Although the average heat transfer coefficient of the discrete broken turbulator and the small chevron turbulator were slightly lower than the baseline case, they had much higher pressure losses. In terms of the overall non-dimensional performance index, which incorporates both the heat transfer and the pressure drop, it was found that the angled and tapered turbulator gave the best overall performance.


2021 ◽  
Author(s):  
Aria Ghazavi

Control of the microchannels’ cross-sectional shape may be of interest in micro-heat sinks, microfluidic particle sorting, and micro-machine lubrication applications. Previously, inverse methods have been used to determine the abrasive jet micromachining (AJM) traverse speed and path required to sculpt the desired cross-section for low Aspect Ratio (AR, the ratio of depth to width, see page xiv) topographies (<0.06). This thesisintroduces an iterative inverse method which allows prediction of the machining procedure required to sculpt high AR (>0.06-1) microchannels of prescribed cross-sectional shape using mask-less AJM. The predictions were experimentally verified for trapezoidal and semi-circular micro-channels and protruded features in borosilicate glass, and symmetric and non-symmetric wedges in poly-methyl-methacrylate (PMMA). Overall, the average accuracy of the machined profiles was 93.6 % in borosilicate glass and 91 % in PMMA. The methodology opens up new possibilities for the micro-fabrication of high-aspect-ratio micro-features of virtually any desired shape.


Author(s):  
Gurjit Singh ◽  
S.S. Sehagal

The computational analysis for micro channel flow in a branched network was investigated by three dimensional CFD approach. The effect of the change of Inlet Plenum (IP) size at a constant Aspect Ratio (AR) of the outermost channel on pressure drop in a fractal branched micro channel was performed. The properties are compared along a particular path and it was observed that the pressure drop along a bifurcated path has considerably less effect when compared to that of the outer most straight branched channel for a constant aspect ratio model. Pressure does not change significantly if we change the IP radius even when all other parameters are constant. Velocity in the inner channel after a straight run has reduced significantly even for same AR and Reynolds Number (Re). This leads to the conclusion that the IP size affects the velocity after the bifurcation.


Author(s):  
Sourav Chowdhury ◽  
Ebrahim Al-Hajri ◽  
Serguei Dessiatoun ◽  
Amir Shooshtari ◽  
Michael Ohadi

Only recently, experimental data is available in open literature in condensation of various refrigerants in small hydraulic diameter microchannels. The phenomenon of two-phase flow and heat transfer mechanism in small diameter microchannels (< 1 mm) may be different than that in conventional tube sizes due to increasing dominance of several influencing parameters like surface tension, viscosity etc. This paper presents an on-going experimental study of condensation heat transfer and pressure drop of refrigerant R134a is a single high aspect ratio rectangular microchannel of hydraulic diameter 0.7 mm and aspect ratio 7:1. This data will help explore the condensation phenomenon in microchannels that is necessary in the design and development of small-scale heat exchangers and other compact cooling systems. The inlet vapor qualities between 20% and 80% and mass fluxes of 130 and 200 kg/m2s have been studied at present. The microchannel outlet conditions are maintained at close to thermodynamic saturated liquid state through a careful experimental procedure. A unique process for fabrication of the microchannel involving milling and electroplating steps has been adopted to maintain the channel geometry close to design values. Measurement instruments are well-calibrated to ensure low system energy balance error, uncertainty and good repeatability of test data. The trends of data recorded are comparable to that found in recent literature on similar dimension tubes.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 132
Author(s):  
Haiying Chen ◽  
Chuan Chen ◽  
Yunyan Zhou ◽  
Chenglin Yang ◽  
Gang Song ◽  
...  

This article presents a novel cross-rib micro-channel (MC-CR) heat sink to make fluid self-rotate. For a thermal test chip (TTC) with 100 w/cm2, the cross-ribs micro-channel were compared with the rectangular (MC-R) and horizontal rib micro-channel (MC-HR) heat sinks. The results show that, with the cross-rib micro-channel, the junction temperature of the thermal test chip was 336.49 K, and the pressure drop was 22 kPa. Compared with the rectangular and horizontal ribs heat sink, the cross-rib micro-channel had improvements of 28.6% and 14.3% in cooling capability, but the pressure drop increased by 10.7-fold and 5.5-fold, respectively. Then, the effects of the aspect ratio (λ) of micro-channel in different flow rates were studied. It was found that the aspect ratio and cooling performance were non-linear. To reduce the pressure drop, the inclination (α) and spacing (S) of the cross-ribs were optimized. When α = 30°, S = 0.1 mm, and λ = 4, the pressure drop was reduced from 22 kPa to 4.5 kPa. In addition, the heat dissipation performance of the rectangular, staggered fin (MC-SF), staggered rib (MC-SR) and cross-rib micro-channels were analyzed in the condition of the same pressure drop, MC-CR still has superior heat dissipation performance.


Sign in / Sign up

Export Citation Format

Share Document