Evaluation of Turbulence Models for the Numerical Study of Reciprocating-Mechanism Driven Heat Loop

Author(s):  
Olubunmi T. Popoola ◽  
Ayobami A. Bamgbade ◽  
Y. Cao

A bellows-type Reciprocating-Mechanism Driven Heat Loops (RMDHL) is a novel heat transfer device that could attain a high heat transfer rate through a reciprocating flow of the working fluid inside the heat transfer device. Although the device has been tested and validated experimentally, analytical or numerical study have not been undertaken to understand its working mechanism and to provide guidance for the device design. In a bid to improve the accuracy of the numerical models of the RMDHL, seven turbulence models for fluid flow have been alternately adapted and implemented in an existing numerical RMDHL model. The obtained results were studied and compared with prior experimental results to gain confidence and select the most suitable turbulence modeling techniques. The Boussinesq approximation has been used and the governing equations have been numerically solved using the CFD solver FLUENT. For the three-dimensional fluid flow, the turbulence models were studied are the Standard, RNG, and Realizable k-ε Models, Standard and SST k-ω Models, Transition k-kL-ω Model and the Transition SST Model. The result of each numerical simulation have been analyzed and ranked using a numerical model calibration template. It was found that the standard k-ω Models provided the least accurate results while the RNG-k-ε Model provided the most accurate predictions. It is expected that the results will help improve the accuracy of the work on the RMDHL modeling.

Author(s):  
Olubunmi Popoola ◽  
Ayobami Bamgbade ◽  
Yiding Cao

An effective design option for a cooling system is to use a two-phase pumped cooling loop to simultaneously satisfy the temperature uniformity and high heat flux requirements. A reciprocating-mechanism driven heat loop (RMDHL) is a novel heat transfer device that could attain a high heat transfer rate through a reciprocating flow of the two-phase working fluid inside the heat transfer device. Although the device has been tested and validated experimentally, analytical or numerical study has not been undertaken to understand its working mechanism and provide guidance for the device design. The objective of this paper is to develop a numerical model for the RMDHL to predict its operational performance under different working conditions. The developed numerical model has been successfully validated by the existing experimental data and will provide a powerful tool for the design and performance optimization of future RMDHLs. The study also reveals that the maximum velocity in the flow occurs near the wall rather than at the center of the pipe, as in the case of unidirectional steady flow. This higher velocity near the wall may help to explain the enhanced heat transfer of an RMDHL.


Author(s):  
F. Mumic ◽  
L. Ljungkruna ◽  
B. Sunden

In this work, a numerical study has been performed to simulate the heat transfer and fluid flow in a transonic high-pressure turbine stator vane passage. Four turbulence models (the Spalart-Allmaras model, the low-Reynolds-number realizable k-ε model, the shear-stress transport (SST) k-ω model and the v2-f model) are used in order to assess the capability of the models to predict the heat transfer and pressure distributions. The simulations are performed using the FLUENT commercial software package, but also two other codes, the in-house code VolSol and the commercial code CFX are used for comparison with FLUENT results. The results of the three-dimensional simulations are compared with experimental heat transfer and aerodynamic results available for the so-called MT1 turbine stage. It is observed that the predictions of the vane pressure field agree well with experimental data, and that the pressure distribution along the profile is not strongly affected by choice of turbulence model. It is also shown that the v2-f model yields the best agreement with the measurements. None of the tested models are able to predict transition correctly.


Author(s):  
Harry Garg ◽  
Vipender Singh Negi ◽  
Nidhi Garg ◽  
AK Lall

As part of the liquid cooling, most of the work has been done on fluid flow and heat transfer analysis for flow field. In the present work, the experimental and numerical studies of the microchannel the fluid flow and heat transfer analysis using nanoliquid coolant have been discussed. The practical aspects for increasing the high heat transfer coefficient from conventional studies and the different geometries and shapes of the microchannel are studied. The Aspect Ratio has significant effect on the microchannels and has been varied from AR 2, 4 and 8 to choose the optimum one. Three different fluids, i.e. de-ionized water, ethylene glycol, and a custom nanofluid are chosen for study. The proposed nanofluid almost interacts as another solid and has reduced thermal resistance, friction effect, and thus it almost vanishes high hot spots. Experimental analysis shows that the proposed nanofluid is excellent fluid for high rate heat removals. Moreover, the performance of the overall system is excellent in terms of high heat transfer coefficient, high thermal conductivity, and high capacity of the fluid. It has been reported that the heat transfer coefficient can be increased to 2.5 times of the water or any other fluid. It was also reported that the AR 4 rectangular-shaped channels are the optimum geometry in the Reynolds number ranging from 50 to 800 considering laminar flow. Examination and identification is based upon the practical result that includes fabrication constraints, commercial application, sealing of the system, ease of operation, and so on.


Author(s):  
Yiding Cao

This paper introduces separate-type heat pipe (STHP) based solar receiver systems that enable more efficient operation of concentrated solar power plants without relying on a heat transfer fluid. The solar receiver system may consist of a number of STHP modules that receive concentrated solar flux from a solar collector system, spread the high concentrated solar flux to a low heat flux level, and effectively transfer the received heat to the working fluid of a heat engine to enable a higher working temperature and higher plant efficiency. In general, the introduced STHP solar receiver has characteristics of high heat transfer capacity, high heat transfer coefficient in the evaporator to handle a high concentrated solar flux, non-condensable gas release mechanism, and lower costs. The STHP receiver in a solar plant may also integrate the hot/cold tank based thermal energy storage system without using a heat transfer fluid.


2006 ◽  
Vol 129 (4) ◽  
pp. 835-841 ◽  
Author(s):  
T. Verstraete ◽  
Z. Alsalihi ◽  
R. A. Van den Braembussche

This paper presents a numerical investigation of the heat transfer inside a micro gas turbine and its impact on the performance. The large temperature difference between turbine and compressor in combination with the small dimensions results in a high heat transfer causing a drop in efficiency of both components. Present study aims to quantify this heat transfer and to reveal the different mechanisms that contribute to it. A conjugate heat transfer solver has been developed for this purpose. It combines a three-dimensional (3D) conduction calculation inside the rotor and the stator with a 3D flow calculation in the radial compressor, turbine and gap between stator and rotor. The results for micro gas turbines of different size and shape and different material characteristics are presented and the impact on performance is evaluated.


Author(s):  
T. Verstraete ◽  
Z. Alsalihi ◽  
R. A. Van den Braembussche

This paper presents a numerical investigation of the heat transfer inside a micro gasturbine and its impact on the performance. The high temperature difference between turbine and compressor in combination with the small dimensions results in a high heat transfer causing a drop in efficiency of both components. Present study aims to quantify this heat transfer and to reveal the different mechanisms that contribute to it. A conjugate heat transfer solver has been developed for this purpose. It combines a 3D conduction calculation inside the rotor and the stator with a 3D flow calculation in the radial compressor, turbine and gap between stator and rotor. The results for micro gasturbines of different size and shape and different material characteristics are presented and the impact on performance is evaluated.


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Liang Gong ◽  
Krishna Kota ◽  
Wenquan Tao ◽  
Yogendra Joshi

Wavy channels were investigated in this paper as a passive scheme to improve the heat transfer performance of laminar fluid flow as applied to microchannel heat sinks. Parametric study of three-dimensional laminar fluid flow and heat transfer characteristics in microsized wavy channels was performed by varying the wavy feature amplitude, wavelength, and aspect ratio for different Reynolds numbers between 50 and 150. Two different types of wavy channels were considered and their thermal performance for a constant heat flux of 47 W/cm2 was compared. Based on the comparison with straight channels, it was found that wavy channels can provide improved overall thermal performance. In addition, it was observed that wavy channels with a configuration in which crests and troughs face each other alternately (serpentine channels) were found to show an edge in thermal performance over the configuration where crests and troughs directly face each other. The best configuration considered in this paper was found to provide an improvement of up to 55% in the overall performance compared to microchannels with straight walls and hence are attractive candidates for cooling of future high heat flux electronics.


Author(s):  
Liang Gong ◽  
Krishna Kota ◽  
Wenquan Tao ◽  
Yogendra Joshi

Wavy channels are investigated in this paper as a passive scheme to improve the heat transfer performance of laminar fluid flow as applied to microchannel heat sinks. Parametric study of three-dimensional laminar fluid flow and heat transfer characteristics in micro-sized wavy channels was performed by varying the wavy feature amplitude and wavelength at different Reynolds numbers between 50 and 150. Two different types of wavy channels were considered and their thermal performance for a constant heat flux of 47 W/cm2 was compared. Based on the comparison with straight channels, it was found that wavy channels can provide improved overall thermal performance. In addition, it was observed that wavy channels with a configuration in which crests and troughs face each other alternately (serpentine channels) were found to show an edge in thermal performance over the configuration where crests and troughs face each other. The best configuration considered in this paper was found to provide an improvement of up to 55% in the overall performance compared to microchannels with straight walls and hence are attractive candidates for cooling of future high heat flux electronics.


Author(s):  
Sai Sujith Obuladinne ◽  
Huseyin Bostanci

Two-phase spray cooling has been an emerging thermal management technique offering high heat transfer coefficients (HTCs) and critical heat flux (CHF) levels, near-uniform surface temperatures, and efficient coolant usage that enables to design of compact and lightweight systems. Due to these capabilities, spray cooling is a promising approach for high heat flux applications in computing, power electronics, and optics. The two-phase spray cooling inherently depends on saturation temperature-pressure relationships of the working fluid to take advantage of high heat transfer rates associated with liquid-vapor phase change. When a certain application requires strict temperature and/or pressure conditions, thermophysical properties of the working fluid play a critical role in attaining proper efficiency, reliability, or packaging structure. However, some of the commonly used working fluids today, including refrigerants and dielectric liquids, have relatively poor properties and heat transfer performance. In such cases, utilizing binary mixtures to tune working fluid properties becomes an alternative approach. This study aimed to conduct an initial investigation on the spray cooling characteristics of practically important binary mixtures and demonstrate their capability for challenging high heat flux applications. The working fluid, water/2-propanol binary mixture at various concentration levels, specifically at x1 (liquid mass fraction of 2-proponal in water) of 0.0 (pure water), 0.25, 0.50, 0.879 (azeotropic mixture) and 1.0, represented both non-azeotropic and azeotropic cases. Tests were performed on a closed loop spray cooling system using a pressure atomized spray nozzle with a constant liquid flow rate at corresponding 20°C subcooling conditions and 1 Atm pressure. A copper test section measuring 10 mm × 10 mm × 2 mm with a plain, smooth surface simulated high heat flux source. Experimental procedure involved controlling the heat flux in increasing steps, and recording the steady-state temperatures to obtain cooling curves in the form of surface superheat vs heat flux. The obtained results showed that pure water (x1 = 0.0) and 2-propanol (x1 = 1.0) provide the highest and lowest heat transfer performance, respectively. At a given heat flux level, the HTC values indicated strong dependence on x1, where the HTCs depress proportional to the concentration difference between the liquid and vapor phases. The CHF values sharply decreased at x1≥ 0.25.


2015 ◽  
Vol 813-814 ◽  
pp. 674-678
Author(s):  
M. Satheeshkumar ◽  
M.R. Thansekhar ◽  
C. Anbumeenakshi ◽  
S. Suresh

Microchannels are of current interest for use in heat exchangers, where very high heat transfer performance is desired. Microchannels provide very high heat transfer coefficients because of their small hydraulic diameters. In this study, a numerical investigation of fluid flow in microchannels with varying hydraulic diameters is presented. Six channels with wavy shape are considered. Header is the major part in the microchannel, which supplies fluid into different channels. A CFD model was created to simulate the fluid flow in the header and microchannels. In this work, five different shapes of the header were considered namely circular, frustum conical, rectangular, triangular and trapezoidal. The results from these simulations are presented, and it is observed that the flow distribution is significantly affected by geometrical properties of the channel and the header.


Sign in / Sign up

Export Citation Format

Share Document