Characterizing Surface Roughness Effects on Supersonic Turbulent Boundary Layers

2021 ◽  
Author(s):  
Rozie Zangeneh

Abstract Flight vehicles traveling at supersonic or hypersonic speeds are vulnerable to the onset of surface roughness, which can result in changes in the state of the boundary layer, ultimately affecting the performance of the vehicle. While the majority of the wetted surface area of a vehicle is relatively smooth, every vehicle will contain roughness on some level. The concept of similarity between smooth- and rough-wall flows is of great practical importance as most computational and analytical modeling tools rely on it either explicitly or implicitly in predicting flows over rough walls. While a number of important questions have yet to be answered, significant progress has been made in the understanding of flows over rough surfaces in recent years. This paper will be conducting numerical research in rough-wall-bounded turbulent flows in supersonic regimes. Wall-modeled Large Eddy Simulation (WMLES) on a flat plate with various roughness ratios will be conducted at M∞ = 2 to evaluate the boundary layer responses. These responses will be characterized in ensemble averaged mean velocity characteristics as well as turbulent intensity responses through the Reynolds Stresses. The second goal is to characterize the streamwise development of mechanical distortions in the domain. In addition, the near-wall coherent structures will be analyzed to determine the impact of roughness effects. The mean and turbulent statistics scaled by the roughness friction velocity will be compared to other results.

Author(s):  
M. Agelinchaab ◽  
M. F. Tachie

A particle image velocimetry is used to study the characteristics of separated and reattached turbulent flow over two-dimensional transverse blocks of square, rectangular and semi-circular cross-sections fixed to the bottom wall of an open channel. The ratio of upstream boundary layer thickness to block height is considerably higher than in prior studies. The results show that the mean and turbulent statistics in the recirculation region and downstream of reattachment are significantly different from the upstream boundary layer. The variation of the Reynolds stresses along the separating streamlines is discussed within the context of vortex stretching, longitudinal strain rate and wall damping. It appears wall damping is a more dominant mechanism in the vicinity of reattachment. The levels of turbulence diffusion and production by the normal stresses are significantly higher than in classical turbulent boundary layers. The bulk of turbulence production occurs in mid-layer and transported into the inner and outer layers. The results also reveal that the curvature of separating streamline, separating bubble beneath it as well as the mean velocity and turbulent quantities depend strongly on block geometry.


2001 ◽  
Vol 124 (1) ◽  
pp. 108-117 ◽  
Author(s):  
S. Becker ◽  
C. M. Stoots ◽  
K. G. Condie ◽  
F. Durst ◽  
D. M. McEligot

New fundamental measurements are presented for the transition process in flat plate boundary layers downstream of two-dimensional square ribs. By use of laser Doppler anemometry (LDA) and a large Matched-Index-of-Refraction (MIR) flow system, data for wall-normal fluctuations and Reynolds stresses were obtained in the near wall region to y+<0.1 in addition to the usual mean streamwise velocity component and its fluctuation. By varying velocity and rib height, the experiment investigated the following range of conditions: k+=5.5 to 21, 0.3<k/δ1<1,180<Rek<740,6×104<Rex,k<1.5×105,ReΘ660,−125<x−xk/k<580. Consequently, results covered boundary layers which retained their laminar characteristics through those where a turbulent boundary layer was established shortly after reattachment beyond the forcing rib. For “large” elements, evolution of turbulent statistics of the viscous layer for a turbulent boundary layer y+<∼30 was rapid even in flows where the mean velocity profile still showed laminar behavior.


1975 ◽  
Vol 26 (3) ◽  
pp. 202-210 ◽  
Author(s):  
R A Antonia ◽  
D H Wood

SummaryMeasurements of mean velocity and Reynolds shear stress have been made in a turbulent boundary layer downstream of a small step change in surface roughness. Upstream of the step the surface is smooth, while downstream it consists of a d-type rough wall made up by a series of two-dimensional elements of square cross section placed transversely across the flow and spaced one element width apart in the direction of the flow. The calculated mean velocity and Reynolds shear stress profiles obtained using the method of Bradshaw, Ferriss and Atwell are in good agreement with the measurements throughout the relaxation region of the layer. Well downstream the calculation method adequately reproduces the self-preserving features of a d-type rough wall.


1975 ◽  
Vol 42 (3) ◽  
pp. 591-597 ◽  
Author(s):  
D. H. Wood ◽  
R. A. Antonia

Mean velocity and turbulence intensity measurements have been made in a fully developed turbulent boundary layer over a d-type surface roughness. This roughness is characterised by regular two-dimensional elements of square cross section placed one element width apart, with the cavity flow between elements being essentially isolated from the outer flow. The measurements show that this boundary layer closely satisfies the requirement of exact self-preservation. Distribution across the layer of Reynolds normal and shear stresses are closely similar to those found over a smooth surface except for the region immediately above the grooves. This similarity extends to distributions of third and fourth-order moments of longitudinal and normal velocity fluctuations and also to the distribution of turbulent energy dissipation. The present results are compared with those obtained for a k-type or sand grained roughness.


1999 ◽  
Author(s):  
João Henrique D. Guimarães ◽  
Sergio J. F. dos Santos ◽  
Jian Su ◽  
Atila P. Silva Freire

Abstract In present work, the dynamic and thermal behaviour of flows that develop over surfaces that simultaneously present a sudden change in surface roughness and temperature are discussed. In particular, the work is concerned with the physical validation of a newly proposed formulation for the near wall temperature profile. The theory uses the concept of the displacement in origin, together with some asymptotic arguments, to propose a new expression for the logarithmic region of the turbulent boundary layer. The new expressions are, therefore, of universal applicability, being independent of the type of rough surface considered. The present formulation may be used to give wall boundary conditions for two-equation differential models. The theoretical results are validated with experimental data obtained for flows that develop over flat surfaces with sudden changes in surface roughness and in temperature conditions. Measurements of mean velocity and of mean temperature are presented. A reduction of the data provides an estimate of the skin-friction coefficient, the Stanton number, the displacement in origin for both the velocity and the temperature profiles, and the thickness of the internal layers for the velocity and temperature profiles. The skin-friction co-efficient was calculated based on the chart method of Perry and Joubert (J.F.M., 17, 193–211, 1963) and on a balance of the integral momentum equation. The same chart method was used for the evaluation of the Stanton number and the displacement in origin.


2019 ◽  
Vol 36 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Xiaotong Cui ◽  
Nan Jiang ◽  
Xiaobo Zheng ◽  
Zhanqi Tang

Abstract This study experimentally investigates the impact of a single piezoelectric (PZT) actuator on a turbulent boundary layer from a statistical viewpoint. The working conditions of the actuator include a range of frequencies and amplitudes. The streamwise velocity signals in the turbulent boundary layer flow are measured downstream of the actuator using a hot-wire anemometer. The mean velocity profiles and other basic parameters are reported. Spectra results obtained by discrete wavelet decomposition indicate that the PZT vibration primarily influences the near-wall region. The turbulent intensities at different scales suggest that the actuator redistributes the near-wall turbulent energy. The skewness and flatness distributions show that the actuator effectively alters the sweep events and reduces intermittency at smaller scales. Moreover, under the impact of the PZT actuator, the symmetry of vibration scales’ velocity signals is promoted and the structural composition appears in an orderly manner. Probability distribution function results indicate that perturbation causes the fluctuations in vibration scales and smaller scales with high intensity and low intermittency. Based on the flatness factor, the bursting process is also detected. The vibrations reduce the relative intensities of the burst events, indicating that the streamwise vortices in the buffer layer experience direct interference due to the PZT control.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Andrew Laban ◽  
Seyed Sobhan Aleyasin ◽  
Mark Francis Tachie ◽  
Mike Koupriyanov

The objective of this paper is to investigate the effects of nozzle spacing on the mean velocity and higher-order turbulent statistics of free twin round jets produced from sharp contraction nozzles. The experiments were performed in an air chamber where four nozzle spacing ratios, S/d = 2.8, 4.1, 5.5, and 7.1, were investigated at a fixed Reynolds number of 10,000. A planar particle image velocimetry (PIV) system was used to conduct the velocity measurements. The results show that downstream of the potential core, a reduction in spacing ratio leads to an earlier and more intense interaction between the jets, indicated by enhanced half-velocity width spread rate in the inner shear layers and a significant rise of turbulent intensities and vorticity thickness along the symmetry plane. A reduction in spacing ratio, however, confines the ambient fluid entrainment along the inner shear layers leading to a reduced core jet velocity decay rate. The closer proximity of the jets also leads to the decrease of Reynolds stresses in the inner shear layers but not in the outer shear layers. The Reynolds stress ratios along the jet centerline reveal the highest anisotropy in the potential core region.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Paul J. Kristo ◽  
Coleman D. Hoff ◽  
Ian G. R. Craig ◽  
Mark L. Kimber

Abstract Turbulent mixing in the near region of a round jet with three slot lobes is examined via mean velocity and turbulent statistics and structures at a Reynolds number of 15,000. The design utilizes separate flow motivations upstream of each geometric feature, deviating from conventional nozzles or orifice plates. Immediate outlet velocity profiles are heavily influenced by opposing pressure gradients between the neighboring round and slot streams. Spanwise mean velocity profiles reveal the majority of the convective exchange between a given slot and the round center occurs in the immediate near field, but has lasting effects on the axial centerline profiles downstream. This is also reflected by the velocity half-widths, exhibiting asymmetry across the entirety of available measurements. Centerline turbulence intensities exhibit strong and short-lived isotropy. The increasingly anisotropic intensities found downstream are lower than similar geometries from the literature, implying that mixing development is inhibited. Reynolds stresses at the round-slot interface are significantly smaller than the round-stagnant exchange, but achieve a symmetric condition at x/D ≅ 4. Two-point spatial correlations of the fluctuating streamwise velocity exhibit stronger dependence toward the axial centerline at the round-slot interface in comparison to the nominal round radius. In contrast, spanwise velocity fluctuations exhibit nearly identical, localized behaviors on each side of the jet. Corresponding differences in streamwise integral length scale peak in the range 1.0 ≤ x/D ≤ 1.5, and so too do the turbulent structures in this area, as a result of the collated jet geometry.


Sign in / Sign up

Export Citation Format

Share Document