scholarly journals Influence of the Topological Structures of the Nose of High-Speed Maglev Train on Aerodynamic Performances

2021 ◽  
Author(s):  
Yeteng Wang ◽  
Zhenxu Sun

Abstract In the past few years, considerable attention has been paid to high-speed maglev train in the field of rail transit. The design speed of the high-speed maglev train is 600km/h, which is significantly higher than that of the high-speed train. With the increase in operating speed, high-speed maglev trains have higher requirements for aerodynamic shape. Superior performance, the beautiful aerodynamic shape is an important direction for the development of high-speed maglev trains. Based on the Vehicle Modeling Function (VMF) method, the current research has developed a parametric shape design method suitable for the aerodynamic shape of the maglev train’s nose. This method can obtain different topological structures of the high-speed maglev train’s nose. The current research uses this method to generate four maglev train noses with large appearance differences and uses these train noses to construct four simplified high-speed maglev models. Then this study numerically analyzes the flow fields of different train models and compares the differences in aerodynamic performance including aerodynamic drag, aerodynamic lift and wake characteristics. The Q-criterion is used to study the vortex structure and mechanism of different train wake regions, and the vortex propagation process is studied by turbulence kinetic energy (TKE). Studying the difference in the aerodynamic force of different topological shapes will help to improve the aerodynamic performance of high-speed maglev trains.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-17
Author(s):  
He-xuan Hu ◽  
Wan-xin Lei ◽  
Ye Zhang

With the world development of high-speed railways and increasing speeds, aerodynamic forces and moments acting on trains have been increased further, making trains stay at a “floated” state. Under a strong crosswind, the aerodynamic performance of a train on the embankment is greatly deteriorated; lift force and horizontal force borne by trains will be increased quickly; trains may suffer derailing or overturning more easily compared with the flat ground; train derailing will take place when the case is serious. All of these phenomena have brought risks to people’s life and properties. Hence, the paper establishes an aerodynamic model about a high-speed train passing an air barrier, computes aerodynamic forces and moments, and analyzes pulsating pressures on the train surface as well as those of unsteady flow fields around the train. Computational results indicate that when the train passed the embankment air barrier, the head wave of air pressure full wave is more than the tail wave; the absolute value of negative wave is more than that of the positive wave, which is more obvious in the head train. When the train is passing the air barrier, pressure pulsation values at head train points are more than those at other points, while pressure changes most violently at the train bottom, and pressure values close to the air barrier are more than those points far from the air barrier. Pressure values at the cross section 1 were larger than those of other points. Pressure values at measurement points of the tail train ranked the second place, with the maximum negative pressure of 1253 Pa. Pressure change amplitudes and maximum negative pressure on the train surface are increased quickly, while pressure peak values on the high-speed train surface are in direct ratio to the running speed. With the increased speed of the high-speed train, when it is running in the embankment air barrier, the aerodynamic force and moment borne by each train body are increased sharply, while the head train suffers the most obvious influences of aerodynamic effects.


Author(s):  
Yeongbin Lee ◽  
Minho Kwak ◽  
Kyu Hong Kim ◽  
Dong-Ho Lee

In this study, the aerodynamic characteristics of pantograph system according to the pantograph cover configurations for high speed train were investigated by wind tunnel test. Wind tunnel tests were conducted in the velocity range of 20∼70m/s with scaled experimental pantograph models. The experimental models were 1/4 scaled simplified pantograph system which consists of a double upper arm and a single lower arm with a square cylinder shaped panhead. The experimental model of the pantograph cover is also 1/4 scaled and were made as 4 different configurations. It is laid on the ground plate which modeled on the real roof shape of the Korean high speed train. Using a load cell, the aerodynamic force such as a lift and a drag which were acting on pantograph system were measured and the aerodynamic effects according to the various configurations of pantograph covers were investigated. In addition, the total pressure distributions of the wake regions behind the panhead of the pantograph system were measured to investigate the variations of flow pattern. From the experimental test results, we checked that the flow patterns and the aerodynamic characteristics around the pantograph systems are varied as the pantograph cover configurations. In addition, it is also found that pantograph cover induced to decrease the aerodynamic drag and lift forces. Finally, we proposed the aerodynamic improvement of pantograph cover and pantograph system for high speed train.


2013 ◽  
Vol 307 ◽  
pp. 156-160
Author(s):  
Yao Ping Zhang

Because of reducing aerodynamic drag, the maglev train could run at a high-speed in the partial vacuum tube. Scientists of some conutries such as U.S., Swiss and China, have started the research work on high-speed tube trains. In this situation, evacuated tube transportation aerodynamics becomes an important theory research aspect, in which the main study content is how to calculate aerodynamic drag. Based on the explicit formula for estimating aerodynamic drag on moving body in an infinite boundary surroundings put up by Isaac Newton, the evacuated tube surroundings is analyzed and the explicit formula with blockage ratio as an independent variable for estimating aerodynamic drag acted on trains running in the evacuated tube which is a finite space is deduced. With the calculation case, compared with the results came out from the explicit formula got in this paper and the results got by Fluent software, it was found that those results are closed. Thus, the explicit formula created in this paper for conveniently estimating aerodynamic drag based on trains running in evacuated tube transportation is credible.


2021 ◽  
Author(s):  
Shi Meng ◽  
Guang Chen ◽  
Dan Zhou ◽  
Shuang Meng

Abstract The effect of the ground condition on unsteady aerodynamic performance of maglev train was numerically investigated with an IDDES (Improved Delayed Detached Eddy Simulation) method. The accuracy of the numerical method has been validated by wind tunnel experiments. The flow structure, slipstream and aerodynamic force around the train under stationary and moving ground conditions were compared. Compared with the stationary ground condition, the vortex structure under the condition of moving ground generated by the wake region is narrower and higher because of the track. Near the nose point of the head and tail vehicles, the peak value of slipstream under the condition of moving ground is slightly higher than that under stationary ground. In the wake area, the effect of the main vortex structure on both sides of the tail vehicle and the track makes the vortex structure in the wake area stronger than that under moving ground, the slipstream peak is larger and the locus thereof is further forward. Under the two ground conditions, the vortex structure is periodically shed from both sides of the train into the wake area, and the shedding frequency of the main vortex under the moving ground condition is lower than that under the stationary ground condition. Moving ground can increase the resistance of the maglev train, reduce the lift of the maglev train, and decrease the standard deviation of the maglev train’s aerodynamic force.


2017 ◽  
Vol 44 (4) ◽  
pp. 89-97 ◽  
Author(s):  
Zhenfeng Wu ◽  
Enyu Yang ◽  
Wangcai Ding

Aerodynamic drag plays an important role in high-speed trains, and how to reduce the aerodynamic drag is one of the most important research subjects related to modern railway systems. This paper investigates a design method for large-scale streamlined head cars of high-speed trains by adopting NURBS theory according to the outer surface characteristics of trains. This method first created the main control lines of the driver cab by inputting control point coordinates; then, auxiliary control lines were added to the main ones. Finally, the reticular region formed by the main control lines and auxiliary ones were filled. The head car was assembled with the driver cab and sightseeing car in a virtual environment. The numerical simulation of train flow field was completed through definition of geometric models, boundary conditions, and space discretization. The calculation results show that the aerodynamic drag of the high-speed train with large-scale streamlined head car decreases by approximately 49.3% within the 50-300 km/h speed range compared with that of the quasi-streamlined high-speed train. This study reveals that the high-speed train with large-scale streamlined head car could achieve the purpose of reducing running aerodynamic drag and saving energy, and aims to provide technical support for the subsequent process design and production control of high-speed train head cars.


Author(s):  
Zhenxu Sun ◽  
Ye Zhang ◽  
Guowei Yang

In the past decade, the high speed trains (HSTs) in China have experienced a booming development, with the design of CRH380A as a predominant example. A series of brand new HSTs have been developed with high aerodynamic performance, which includes the running resistance, the lift of the trailing car, pressure waves when trains pass by each other, aerodynamic noise in the far field, etc. In order to design HSTs with better aerodynamic performance, it is necessary to perform aerodynamic shape optimization, especially to optimize the streamline shape of HSTs. Parametrization is the basis for the whole optimization process, since good parametrization approach not only affects the optimization strategy, but also determines the design space and optimization efficiency. In the present paper, a series of work related to the streamline shape parametrization performed by the author in recent years have been introduced. Four different parametrization approaches have been exhibited, which are Local Shape Function method (LSF) and Free-Foam Deformation method (FFD), Modified Vehicle Modeling Function method (MVMF), Class function/Shape function Transformation method (CST). These methods could be categorized into two kinds: shape disturbance approach (LSF and FFD) and shape description approach (MVMF and CST). Among these four methods, some are developed by the authors while some are locally modified so as to meet the parametrization of the streamline shape. The detailed process of these four approaches are exhibited in the present paper and the characteristics of these four approaches are compared.


2021 ◽  
Vol 11 (4) ◽  
pp. 1555
Author(s):  
Zhongyuan Liu ◽  
Lie Luo ◽  
Binqian Zhang

This paper puts forward an aerodynamic design method to improve the high-speed aerodynamic performance of an aircraft with low-aspect-ratio tailless configuration. The method can ameliorate the longitudinal moment characteristics of the configuration by designing and collocating the key section airfoils with the constrains of fixed parameters of planform shape and capacity. Firstly, the effect of twisting the wing, fore-loading and aft-reflexing key section airfoils on the high-speed aerodynamic performance of the configuration is evaluated by high-fidelity numerical methods, and quantified by defining trimming efficiency factors. Then, a linear superposition formula is obtained by analyzing the effect rule of trimming efficiency factor, and based on the formula the design and collocation methods of key section airfoils are achieved. According to the methods, a trimmed configuration is obtained. The results of computational fluid dynamics (CFD) and wind tunnel tests show that the trimmed configuration has smaller zero-lift pitching moment and higher available lift-to-drag ratio than the initial configuration at cruise, besides the trimmed configuration achieves the design principle raised for tailless configuration, which can be described as the zero-pitching moment, cruising design lift coefficient, and maximum lift-to-drag ratio are coincident. In addition, at off-design conditions, the trimmed configuration shows favorable drag divergence characteristics, satisfactory aerodynamic characteristics at medium-altitude maneuvering condition, and good stall and pitching-moment performance at low speed state.


Author(s):  
Zhenxu Sun ◽  
Yongfang Yao ◽  
Fanbing Kong ◽  
Guowei Yang

Abstract As the running speed increases, the aerodynamic loads become dominant for high-speed ground vehicles. Meanwhile, the aerodynamic lift of the trailing car becomes crucial at higher speed, which may lead to security and comfort problems. Flow field details are the root to the aerodynamic loads. Study on the wake characteristics of the train could shed light to learn the mechanism of their aerodynamic loads and know how to improve their aerodynamic performance. In the present paper, the urban maglev train with a design speed of 200 km/h is mainly focused on. Numerical investigation is adopted for current study. The Improved Delayed Detached Eddy Simulation (IDDES) numerical approach is utilized to count for unsteady flow details. To characterize the vortex structures, the iso-surface of Q for urban maglev train is obtained and compared. Due to the existence of guide way, the streamline of maglev trains is much more influenced by the guide way. The ground effect for maglev trains is more obvious. The streamlined shape is quite essential to the flow phenomena, and as a result, the vortex structures for urban maglev trains are also different. Guide way could lead to more vortices, which is common for maglev trains. However, lateral vortex could be observed for urban maglev trains, which is unique and is a result of the flat shape of the trailing nose. Meanwhile, the slipstream in the wake of the train is also compared. The streamlined shape of urban maglev trains is the bluntest, which induces the relatively biggest train wind. Based on the above analysis, the unsteady characteristics of flow field for urban maglev train are obtained and the main vortex structures are characterized. Based on the unsteady analysis of flow field, the relationships between aerodynamic loads of the trailing car and different kinds of trailing vortices are obtained. Current study could shed light on the understanding of mechanism of aerodynamic performance of a train and how to design the streamlined shape for trains with certain operational speed.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Dan Zhou ◽  
Liliang Wu ◽  
Changda Tan ◽  
Tian'en Hu

Abstract Transient numerical simulations were carried out by placing dimples at the top, sides and bottoms of the tail car streamline area of a high-speed maglev train. The results of an improved delayed detached eddy simulation turbulence model using three-dimensional compressible Navier-Stokes and shear-stress transport K-Omega double equations were compared to the results of a wind tunnel test to verify the numerical simulation accuracy, within 5% of the ground truth, which is an acceptable precision range. The results show that dimples arranged on the streamline area atop the train tail car affected the locations at which the airflow at the top and bottom of the train met and weakened the strength of the wake. The aerodynamic drag and lift coefficient decreased by 3.40% and 4.27%, respectively. When the dimples were arranged on the streamline area at the sides or bottoms of the train tail car, they had little effect on the top of the tail car, so they did not destroy the balance of the airflow at the top and bottom. They also had little influence on the development of wake topology. Therefore, the aerodynamic drag and lift of the train changed little.


Author(s):  
Jiqiang Niu ◽  
Yueming Wang ◽  
Feng Liu ◽  
Rui Li

The continuous increase in train speed has brought serious challenges to train braking safety. Aerodynamic braking technology can effectively improve the braking effect of trains at high speeds. In this study, an aerodynamic braking device installed in the inter-car gap region (ICG) of a high-speed train is proposed and the aerodynamic performance of the high-speed train with an aerodynamic braking device is assessed by improved delayed detached eddy simulation (IDDES) based on the κ-ω turbulence model. The results show that the opening of the plate significantly changes the aerodynamic performance of the train, thereby greatly increasing the aerodynamic forces of the train and their fluctuation degree. The effect of the opening of the plate increases the turbulence of the downstream flow field around the tail car. The affected area is mainly concentrated in the flow field around the location of the plate for the pressure field and the whole flow field behind the plate for the velocity field. The effect of the plate mounted on the uniform-car body region (UCG) on increasing the aerodynamic drag is better than that at the ICG, though the aerodynamic fluctuation and the influence on the surrounding flow field will also be great.


Sign in / Sign up

Export Citation Format

Share Document