Computational Investigation of Thrust Production of a Dolphin at Various Swimming Speeds

2021 ◽  
Author(s):  
Junshi Wang ◽  
Vadim Pavlov ◽  
Zhipeng Lou ◽  
Haibo Dong

Abstract Dolphins are known for their outstanding swimming performance. However, the difference in flow physics at different speeds remains elusive. In this work, the underlying mechanisms of dolphin swimming at three speeds, 2 m/s, 5 m/s, and 8 m/s, are explored using a combined experimental and numerical approach. Using the scanned CAD model of the Atlantic white-sided dolphin (Lagenorhynchus acutus) and virtual skeleton-based surface reconstruction method, a three-dimensional high-fidelity computational model is obtained with time-varying kinematics. A sharp-interface immersed-boundary-method (IBM) based direct numerical simulation (DNS) solver is employed to calculate the corresponding thrust production, wake structure, and surface pressure at different swimming speeds. It is found that the fluke keeps its effective angle of attack at high values for about 60% of each stroke. The total pressure force coefficient along the x-axis converges as the speed increase. The flow and surface pressure analysis both show considerable differences between lower (2 m/s) and higher (5 m/s and 8 m/s) speeds. The results from this work help to bring new insight into understanding the force generation mechanisms of the highly efficient dolphin swimming and offer potential suggestions to the future designs of unmanned underwater vehicles.

Author(s):  
Junshi Wang ◽  
Huy Tran ◽  
Martha Christino ◽  
Carl White ◽  
Joseph Zhu ◽  
...  

Abstract A combined experimental and numerical approach is employed to study the hydrodynamic performance and characterize the flow features of thunniform swimming by using a tuna-inspired underwater vehicle in forward swimming. The three-dimensional, time-dependent kinematics of the body-fin system of the underwater vehicle is obtained via a stereo-videographic technique. A high-fidelity computational model is then directly reconstructed based on the experimental data. A sharp-interface immersed-boundary-method (IBM) based incompressible flow solver is employed to compute the flow. The primary objective of the computational effort is to quantify the thrust performance of the model. The body kinematics and hydrodynamic performances are quantified and the dynamics of the vortex wake are analyzed. Results have shown significant leading-edge vortex at the caudal fin and unique vortex ring structures in the wake. The results from this work help to bring insight into understanding the thrust producing mechanism of thunniform swimming and to provide potential suggestions in improving the hydrodynamic performance of swimming underwater vehicles.


2021 ◽  
pp. 004051752110395
Author(s):  
Yin Chen ◽  
Q Jane Wang ◽  
Mengqi Zhang

This paper reports a numerical approach, based on a nonlinear particle spring model and a collision detection procedure, to simulate the shape of a draped cloth, or a flexible sheet, together with a simple but precise three-dimensional shape reconstruction method for real fabric applications. The latter is utilized to verify the accuracy of the proposed drape simulation model. The drapes of four types of fabric on a cylinder are simulated, and the results are compared with the reconstructed shapes of the same cloths; the results show an excellent agreement. The simulation model is further used to calculate the shapes of skirts of different materials and sizes, and the effects of fabric parameters, length, and waist size are numerically investigated. The results reveal that under the same conditions, the behaviors of different materials are affected by their properties in terms of stiffness coefficients of the springs. The silk skirt looks soft and fluttering; the outer contour curve of the skirt simulated for the polyester fabric appears relatively smoother, but the shape of the cotton skirt seems to be stiffer. The skirt made of fabric of 10% cotton and 90% polyester combines the characteristics of the polyester and cotton fabric.


2013 ◽  
Vol 135 (12) ◽  
Author(s):  
Ali Nematbakhsh ◽  
David J. Olinger ◽  
Gretar Tryggvason

The dynamic motion of floating wind turbines is studied using numerical simulations. The full three-dimensional Navier–Stokes equations are solved on a regular structured grid using a level set method for the free surface and an immersed boundary method for the turbine platform. The tethers, the tower, the nacelle, and the rotor weight are included using reduced-order dynamic models, resulting in an efficient numerical approach that can handle nearly all the nonlinear hydrodynamic forces on the platform, while imposing no limitation on the platform motion. Wind speed is assumed constant, and rotor gyroscopic effects are accounted for. Other aerodynamic loadings and aeroelastic effects are not considered. Several tests, including comparison with other numerical, experimental, and grid study tests, have been done to validate and verify the numerical approach. The response of a tension leg platform (TLP) to different amplitude waves is examined, and for large waves, a nonlinear trend is seen. The nonlinearity limits the motion and shows that the linear assumption will lead to overprediction of the TLP response. Studying the flow field behind the TLP for moderate amplitude waves shows vortices during the transient response of the platform but not at the steady state, probably due to the small Keulegan–Carpenter number. The effects of changing the platform shape are considered, and finally, the nonlinear response of the platform to a large amplitude wave leading to slacking of the tethers is simulated.


2016 ◽  
Vol 3 (6) ◽  
pp. 160230 ◽  
Author(s):  
Jialei Song ◽  
Bret W. Tobalske ◽  
Donald R. Powers ◽  
Tyson L. Hedrick ◽  
Haoxiang Luo

We present a computational study of flapping-wing aerodynamics of a calliope hummingbird ( Selasphorus calliope ) during fast forward flight. Three-dimensional wing kinematics were incorporated into the model by extracting time-dependent wing position from high-speed videos of the bird flying in a wind tunnel at 8.3 m s −1 . The advance ratio, i.e. the ratio between flight speed and average wingtip speed, is around one. An immersed-boundary method was used to simulate flow around the wings and bird body. The result shows that both downstroke and upstroke in a wingbeat cycle produce significant thrust for the bird to overcome drag on the body, and such thrust production comes at price of negative lift induced during upstroke. This feature might be shared with bats, while being distinct from insects and other birds, including closely related swifts.


Author(s):  
Ali Nematbakhsh ◽  
David J. Olinger ◽  
Gretar Tryggvason

The dynamic motion of floating wind turbines is studied using computational simulations. The full three-dimensional Navier-Stokes equations are solved on a regular structured grid, using a level set method for the free surface and modified immersed boundary method to model the turbine platform. The tethers, the tower, the nacelle and the rotor weight are include using reduced order dynamic models, resulting in an efficient numerical approach. Wind is modeled as a constant thrust force. Other aerodynamic loading, rotor gyroscopic effects, and aeroelastic effects are not considered in the current study. The response of a tension leg platform to moderate amplitude waves is examined. By using the current approach, nearly all the nonlinear and viscose effects can be considered while keeping the computational cost reasonable. The model is applied to a Tension Leg Platform (TLP) consisting of a ballasted cylindrical tank.


2019 ◽  
Vol 863 ◽  
pp. 1031-1061 ◽  
Author(s):  
Alexander P. Hoover ◽  
Antonio J. Porras ◽  
Laura A. Miller

Diverse organisms that swim and fly in the inertial regime use the flapping or pumping of flexible appendages and cavities to propel themselves through a fluid. It has long been postulated that the speed and efficiency of locomotion are optimized by oscillating these appendages at their frequency of free vibration. In jellyfish swimming, a significant contribution to locomotory efficiency has been attributed to the effects passive energy recapture, whereby the bell is passively propelled through the fluid through its interaction with stopping vortex rings formed during each expansion of the bell. In this paper, we investigate the interplay between resonance and passive energy recapture using a three-dimensional implementation of the immersed boundary method to solve the fluid–structure interaction of an elastic oblate jellyfish bell propelling itself through a viscous fluid. The motion is generated through a fixed duration application of active tension to the bell margin, which mimics the action of the coronal swimming muscles. The pulsing frequency is then varied by altering the length of time between the application of applied tension. We find that the swimming speed is maximized when the bell is driven at its resonant frequency. However, the cost of transport is maximized by driving the bell at lower frequencies whereby the jellyfish passively coasts between active contractions through its interaction with the stopping vortex ring. Furthermore, the thrust generated by passive energy recapture was found to be dependent on the elastic properties of the jellyfish bell.


Author(s):  
Neng-Yu Zhang ◽  
Terence Wagenknecht ◽  
Michael Radermacher ◽  
Tom Obrig ◽  
Joachim Frank

We have reconstructed the 40S ribosomal subunit at a resolution of 4 nm using the single-exposure pseudo-conical reconstruction method of Radermacher et al.Small (40S) ribosomal subunits were Isolated from rabbit reticulocytes, applied to grids and negatively stained (0.5% uranyl acetate) in a manner that “sandwiches” the specimen between two layers of carbon. Regions of the grid exhibiting uniform and thick staining were identified and photographed twice (magnification 49,000X). The first micrograph was always taken with the specimen tilted by 50° and the second was of the Identical area untilted (Fig. 1). For each of the micrographs the specimen was subjected to an electron dose of 2000-3000 el/nm2.Three hundred thirty particles appearing in the L view (defined in [4]) were selected from both tilted- and untilted-specimen micrographs. The untilted particles were aligned and their rotational alignment produced the azimuthal angles of the tilted particles in the conical tilt series.


2007 ◽  
Vol 42 (4) ◽  
pp. 303-310 ◽  
Author(s):  
Zhi Chen ◽  
Lin Zhao ◽  
Kenneth Lee ◽  
Charles Hannath

Abstract There has been a growing interest in assessing the risks to the marine environment from produced water discharges. This study describes the development of a numerical approach, POM-RW, based on an integration of the Princeton Ocean Model (POM) and a Random Walk (RW) simulation of pollutant transport. Specifically, the POM is employed to simulate local ocean currents. It provides three-dimensional hydrodynamic input to a Random Walk model focused on the dispersion of toxic components within the produced water stream on a regional spatial scale. Model development and field validation of the predicted current field and pollutant concentrations were conducted in conjunction with a water quality and ecological monitoring program for an offshore facility located on the Grand Banks of Canada. Results indicate that the POM-RW approach is useful to address environmental risks associated with the produced water discharges.


2021 ◽  
Vol 233 ◽  
pp. 109189
Author(s):  
Bin Yan ◽  
Wei Bai ◽  
Sheng-Chao Jiang ◽  
Peiwen Cong ◽  
Dezhi Ning ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document