GT10C: 30 MW Gas Turbine for Mechanical Drive and Power Generation

Author(s):  
Anders Hellberg ◽  
Georg Norden ◽  
Sergey Shukin

ALSTOM Power has launched the GT10C a 30 MW industrial gas turbine (see figure 1) upgraded from the 25 MW GT10B. The thermal efficiency of the new gas turbine is 37.3% (shaft) and 36% electrical at ISO inlet conditions with no losses. The new GT10C has a Dry Low Emission (DLE) combustor for both natural gas and diesel oil fuel; it has NOx emissions at 15 ppmv on gas and 42 ppmv on oil fuel (15% O2 dry). The first GT10C is now manufactured and assembled, and has been under testing since October 2001. For this purpose a new test rig has been built in Finspong, Sweden, in order to verify performance and reliability. GT10C will be available to the market mid-2002 and manufactured in parallel with GT10B. The general design is based on the GT10B and measures have been taken for maximum reliability and maintenance in order to keep operation costs to a minimum. Improvements for GT10C are mainly derived from GT10B or taken from ALSTOM Power GTX100 (43 MW gas turbine), as described herein.

Author(s):  
Nicolas Demougeot ◽  
Jeffrey A. Benoit

The search for power plant sustainability options continues as regulating agencies exert more stringent industrial gas turbine emission requirements on operators. Purchasing power for resale, de-commissioning current capabilities altogether and repowering by replacing or converting existing equipment to comply with emissions standards are economic-driven options contemplated by many mature gas turbine operators. NRG’s Gilbert power plant based in Milford, NJ began commercial operation in 1974 and is fitted with four (4) natural gas fired GE’s 7B gas turbine generators with two each exhausting to HRSG’s feeding one (1) steam turbine generator. The gas turbine units, originally configured with diffusion flame combustion systems with water injection, were each emitting 35 ppm NOx with the New Jersey High Energy Demand Day (HEED) regulatory mandate to reduce NOx emissions to sub 10 ppm by May 1st, 2015. Studies were conducted by the operator to evaluate the economic viability & installation of environmental controls to reduce NOx emissions. It was determined that installation of post-combustion environmental controls at the facility was both cost prohibitive and technically challenging, and would require a fundamental reconfiguration of the facility. Based on this economic analysis, the ultra-low emission combustion system conversion package was selected as the best cost-benefit solution. This technical paper will focus on the ultra low emissions technology and key features employed to achieve these low emissions, a description of the design challenges and solution to those, a summary of the customer considerations in down selecting options and an overview of the conversion scope. Finally, a technical discussion of the low emissions operational flexibility will be provided including performance results of the converted units.


Author(s):  
Xueyou Wen ◽  
Jiguo Zou ◽  
Zheng Fu ◽  
Shikang Yu ◽  
Lingbo Li

Steam-injected gas turbines have a multitude of advantages, but they suffer from the inability to recover precious demineralized water. The present paper describes the test conditions and results of steam injection along with an attempt to achieve water recovery, which were obtained through a series of tests conducted on a S1A-02 small-sized industrial gas turbine. A water recovery device incorporating a compact finned spiral plate cooling condenser equipped with filter screens has been designed for the said gas turbine and a 100% water recovery (based on the design point) was attained.


Author(s):  
K. O. Smith ◽  
A. Fahme

Three subscale, cylindrical combustors were rig tested on natural gas at typical industrial gas turbine operating conditions. The intent of the testing was to determine the effect of combustor liner cooling on NOx and CO emissions. In order of decreasing liner cooling, a metal louvre-cooled combustor, a metal effusion-cooled combustor, and a backside-cooled ceramic (CFCC) combustor were evaluated. The three combustors were tested using the same lean-premixed fuel injector. Testing showed that reduced liner cooling produced lower CO emissions as reaction quenching near the liner wall was reduced. A reduction in CO emissions allows a reoptimization of the combustor air flow distribution to yield lower NOx emissions.


Author(s):  
G. Riccio ◽  
S. Piazzini ◽  
P. Adami ◽  
F. Martelli ◽  
G. Tanzini ◽  
...  

Different geometrical modifications have been investigated and experimentally tested to improve a pilot burner for low emission industrial gas turbine combustors. Results of the ongoing collaboration between the DE of Florence and the Italian electric company ENEL are reported. The activity is dedicated to the improvement of the pilot burner to extend the operable margin of the engine and to reduce, at the same time, the emissions. The study has been performed mainly by means of experimental investigations both on isothermal flow as on combustion test rig. Results of the activity were employed both to obtain design information about the swirler and injection fuel holes for the pilot burner under investigation. Moreover the post-processing of the experimental data permitted the improvement of the correlation implemented into the 1-D model for the prediction of the injected fuel path. These results were implemented in the routine DoFHIS (Design of Fuel Holes Injection Systems) developed for the analysis/design of injection fuel systems.


Author(s):  
Alessandro Innocenti ◽  
Antonio Andreini ◽  
Andrea Giusti ◽  
Bruno Facchini ◽  
Matteo Cerutti ◽  
...  

In the present paper a numerical analysis of a low NOx partially premixed burner for industrial gas turbine applications is presented. The first part of the work is focused on the study of the premixing process inside the burner. Standard RANS CFD approach was used: k–ε turbulence model was modified and calibrated in order to find a configuration able to fit available experimental profiles of fuel/air concentration at the exit of the burner. The resulting profiles at different test points have been used to perform reactive simulations of an experimental test rig, where exhaust NOx emissions were measured. An assessment of the turbulent combustion model was carried out with a critical investigation of the expected turbulent combustion regimes in the system and taking into account the partially premixed nature of the flame due to the presence of diffusion type pilot flames. A reliable numerical setup was discovered by comparing predicted and measured NOx emissions at different operating conditions and at different split ratio between main and pilot fuel. In the investigated range, the influence of the premixer in the NOx formation rate was found to be marginal if compared with the pilot flame one. The calibrated numerical setup was then employed to explore possible modifications to fuel injection criteria and fuel split, with the aim of minimizing exhaust NOx emissions. This preliminary numerical screening of alternative fuel injection strategies allowed to define a set of advanced configurations to be investigated in future experimental tests.


1949 ◽  
Vol 160 (1) ◽  
pp. 454-471 ◽  
Author(s):  
A. T. Bowden ◽  
J. L. Jefferson

The paper describes the principal design features of the Parsons 500 h.p. experimental industrial gas turbine, and records the operating results obtained in running the plant since December 1945. A section is devoted to some of the preliminary investigations on the compressor, combustion, and heat exchanger components, undertaken prior to the building of the unit. Some of the early work on the axial-flow compressor is, it is considered, of particular interest. One of the most important questions remaining to be answered in gas-turbine operation, is the quality of the oil fuel which can be regularly and reliably burned. Details are included in the paper of operating results using a residual oil fuel. Considerable trouble was experienced as a result of the building up of deposits in the turbine blading; these deposits are analysed and compared with the parent oil-fuel analysis, and photographs of spindle and cylinder blading show the nature of the build-up.


Author(s):  
Urmila C. Reddy ◽  
Christine E. Blanchard ◽  
Barry C. Schlein

Pratt & Whitney has developed a novel water-injected Industrial Gas Turbine (IGT) combustor liner design that has demonstrated significant reduction in CO emissions when compared to typical film cooled combustor designs. The CO reduction demonstrated in a prototype test shows that the CO quenching due to cooler film temperatures near the liner wall is a significant source of CO emissions in a conventional water-injected combustor operating on natural gas fuel. This finding paved the way for a combustor design that reduces CO emissions while still maintaining low levels of NOx emissions. This design also has potential for lower NOx since the low CO emissions characteristic enables increased water-injection. This paper presents the emissions characteristics measured on prototype hardware and the design of the engine hardware for future validation. Significant reduction in gaseous emissions was demonstrated with the testing of a prototype at the United Technologies Research Center in East Hartford, CT. This reduction in emissions compared to the baseline film-cooled design for a given operating condition has many benefits to the customer, including reduced need for exhaust catalyst cleanup and extended operating times while still meeting site permits specified in CO tons per year. Other benefits may include the ability to guarantee lower NOx emissions through increased water injection for the current CO emissions output.


Author(s):  
Frank Reiss ◽  
Sven-Hendrik Wiers ◽  
Ulrich Orth ◽  
Emil Aschenbruck ◽  
Martin Lauer ◽  
...  

This paper describes the development and test results of the low emission combustion system for the new industrial gas turbines in the 6–7 MW class from MAN Diesel & Turbo. The design of a robust combustion system and the achievement of very low emission targets were the most important design goals of the combustor development. During the design phase, the analysis of the combustor (i.e. burner design, air distribution, liner cooling design) was supported with different CFD tools. This advanced Dry Low Emission can combustion system (ACC) consists of 6 cans mounted externally on the gas turbine. The behavior and performance of a single can sector was tested over a wide load range and with different boundary conditions; first on an atmospheric test rig and later on a high pressure test rig with extensive instrumentation to ensure an efficient test campaign and accurate data. The atmospheric tests showed a very good performance for all combustor parts and promising results. The high pressure tests demonstrated very stable behavior at all operation modes and very low emissions to satisfy stringent environmental requirements. The whole operation concept of the combustion system was tested first on the single-can high pressure test bed and later on twin and single shaft gas turbines at MAN’s gas turbine test facility. During the engine tests, the can combustors demonstrated the expected combustion performance under real operation conditions. All emissions and performance targets were fully achieved. On the single shaft engine, the combustors were running with single digit ppm NOx levels between 50% and 100% load. The validation phase and further optimization of the gas turbines and the engine components are ongoing. The highlights of the development process and results of the combustor and engine tests will be presented and discussed within this paper.


Author(s):  
Anders Hellberg ◽  
Georg Norden ◽  
Mats Andersson ◽  
Thomas Widgren ◽  
Christer Hjalmarsson ◽  
...  

ALSTOM’s new gas turbine, the GT10C, is a 30 MW industrial gas turbine for mechanical drive and power generation, which has been upgraded from the 25 MW GT10B. The thermal efficiency of the new gas turbine is 37.3% at ISO inlet conditions with no losses. The GT10C features a dual-fuel dry low emission gas turbine, with emissions values of 15 ppm NOx on gaseous fuel and 42 ppm NOX on liquid fuel (also dry). The GT10C was first started and operated on load in November 2001 and the test program is ongoing until the fall of 2002. The program covers a complete package test, including gas turbine, auxiliaries and control system, to ensure package availability. For the tests, a new test rig has been built in Finspong, Sweden, for testing on both natural gas and liquid fuels. The tests have been very successful, achieving the product targets, for example below 15 ppm NOx, without combustor pulsations. This paper discusses operation experience from the test rig, where the engine has been tested on both natural gas and liquid fuel over the whole load range. The engine has been equipped with over 1200 measuring points, covering the complete gas turbine. All critical parameters have been carefully verified in the test, such as turbine blade temperature and stresses, combustor temperatures and dynamics and engine performance. Results from the tests and measurements will be discussed in this paper. Performance and emissions will also be evaluated.


Sign in / Sign up

Export Citation Format

Share Document