Aspects of Cooled Gas Turbine Modelling for the Semi-Closed O2/CO2 Cycle With CO2 Capture

Author(s):  
Kristin Jordal ◽  
Olav Bolland ◽  
A˚ke Klang

In order to capture the behaviour of the oxyfuel cycle operating with high combustor-outlet temperature, the impact of blade and vane cooling on cycle performance must be included in the thermodynamic model. As a basis for a future transient model, three thermodynamic models for the cooled gas turbine are described and compared. The first model, known previously from the literature, models expansion as a continuous process with simultaneous heat and work extraction. The second model is a simple stage-by-stage model and the third is a more detailed stage-by-stage model that includes velocity triangles and enables the use of advanced loss correlations. An airbreathing aeroderivative gas turbine is modelled, and the same gas turbine operating in an oxyfuel cycle is studied. The two simple models show very similar performance trends in terms of variation of pressure ratio and turbine inlet temperature in both cases. With the more detailed model, it was found that, without any change of geometry, the turbine rotational speed increases significantly and performance drops for the maintained geometry and pressure ratio. A tentative increase of blade angles or compressor pressure ratio is found to increase turbine performance and decrease rotational speed. This indicates that a turbine will require re-design for operation in the oxyfuel cycle.

2004 ◽  
Vol 126 (3) ◽  
pp. 507-515 ◽  
Author(s):  
Kristin Jordal ◽  
Olav Bollard ◽  
Ake Klang

In order to capture the behavior of the oxyfuel cycle operating with high combustor-outlet temperature, the impact of blade and vane cooling on cycle performance must be included in the thermodynamic model. As a basis for a future transient model, three thermodynamic models for the cooled gas turbine are described and compared. The first model, known previously from the literature, models expansion as a continuous process with simultaneous heat and work extraction. The second model is a simple stage-by-stage model and the third is a more detailed stage-by-stage model that includes velocity triangles and enables the use of advanced loss correlations. An airbreathing aeroderivative gas turbine is modeled, and the same gas turbine operating in an oxyfuel cycle is studied. The two simple models show very similar performance trends in terms of variation of pressure ratio and turbine inlet temperature in both cases. With the more detailed model, it was found that, without any change of geometry, the turbine rotational speed increases significantly and performance drops for the maintained geometry and pressure ratio. A tentative increase of blade angles or compressor pressure ratio is found to increase turbine performance and decrease rotational speed. This indicates that a turbine will require redesign for operation in the oxyfuel cycle.


Author(s):  
Mayank Maheshwari ◽  
Onkar Singh

Abstract Performance of gas/steam combined cycle power plants relies upon the performance exhibited by both gas based topping cycle and steam based bottoming cycle. Therefore, the measures for improving the performance of the gas turbine cycle and steam bottoming cycle eventually result in overall combined cycle performance enhancement. Gas turbine cooling medium affects the cooling efficacy. Amongst different parameters in the steam bottoming cycle, the deaerator parameter also plays its role in cycle performance. The present study analyzes the effect of deaerator’s operating pressure being varied from 1.6 bar to 2.2 bar in different configurations of simple and reheat gas/steam combined cycle with different cooling medium for fixed cycle pressure ratio of 40, turbine inlet temperature of 2000 K and ambient temperature of 303 K with varying ammonia mass fraction from 0.6 to 0.9. Analysis of the results obtained for different combined cycle configuration shows that for the simple gas turbine and reheat gas turbine-based configurations, the maximum work output of 643.78 kJ/kg of air and 730.87 kJ/kg of air respectively for ammonia mass fraction of 0.6, cycle efficiency of 54.55% and 53.14% respectively at ammonia mass fraction of 0.7 and second law efficiency of 59.71% and 57.95% respectively at ammonia mass fraction of 0.7 is obtained for the configuration having triple pressure HRVG with ammonia-water turbine at high pressure and intermediate pressure and steam turbine operating at deaerator pressure of 1.6 bar.


Author(s):  
Raik C. Orbay ◽  
Magnus Genrup ◽  
Pontus Eriksson ◽  
Jens Klingmann

When low calorific value gases are fired, the performance and stability of gas turbines may deteriorate due to a large amount of inertballast and changes in working fluid properties. Since it is rather rare to have custom-built gas turbines for low lower heating value (LHV) operation, the engine will be forced to operate outside its design envelope. This, in turn, poses limitations to usable fuel choices. Typical restraints are decrease in Wobbe index and surge and flutter margins for turbomachinery. In this study, an advanced performance deck has been used to quantify the impact of firing low-LHV gases in a generic-type recuperated as well as unrecuperated gas turbine. A single-shaft gas turbine characterized by a compressor and an expander map is considered. Emphasis has been put on predicting the off-design behavior. The combustor is discussed and related to previous experiments that include investigation of flammability limits, Wobbe index, flame position, etc. The computations show that at constant turbine inlet temperature, the shaft power and the pressure ratio will increase; however, the surge margin will decrease. Possible design changes in the component level are also discussed. Aerodynamic issues (and necessary modifications) that can pose severe limitations on the gas turbine compressor and turbine sections are discussed. Typical methods for axial turbine capacity adjustment are presented and discussed.


Author(s):  
Mohammad Mansouri Majoumerd ◽  
Peter Breuhaus ◽  
Jure Smrekar ◽  
Mohsen Assadi ◽  
Carmine Basilicata ◽  
...  

As part of a European Union (EU) funded H2-IGCC project, a baseline IGCC power plant was established; this was presented at the ASME Turbo Expo 2011 (GT2011-45701). The current paper focuses on a detailed investigation of the impact of using various fuels considering different operating conditions on the gas turbine performance, and the identification of technical solutions for the realization of the targeted fuel flexibility. Using a lumped model, based on real engine data, compressor and turbine maps of the targeted engine were generated and implemented into the detailed GT model made in the commercial heat and mass balance program, IPSEpro. The implementation was done in terms of look-up tables. The impact of fuel change on the gas turbine island has been investigated and reported in this paper. Calculation results show that for the given boundary conditions, the surge margin of the compressor was slightly reduced when natural gas was replaced by hydrogen-rich syngas. The use of cleaned syngas instead of hydrogen-rich syngas resulted in a considerable reduction of the surge margin and elevation of the turbine outlet temperature (TOT) at design point conditions, when keeping the turbine inlet temperature (TIT) and compressor inlet mass flow unchanged. To maintain the TOT and improve the surge margin, when operating the engine with cleaned syngas, a combination of adjustment of variable inlet guide vanes (VIGV) and reduced TIT was considered. A parameter study was carried out to provide better understanding of the current limitations of the engine and to identify possible modifications to improve fuel flexibility.


Author(s):  
Raik C. Orbay ◽  
Magnus Genrup ◽  
Pontus Eriksson ◽  
Jens Klingmann

When low calorific value gases are fired, the performance and stability of gas turbines may deteriorate due to a large amount of inert ballast and changes in working fluid properties. Since it is rather rare to have custom-built gas turbines for low Lower Heating Value (LHV) operation, the engine will be forced to operate outside its design envelope. This, in turn, poses limitations to usable fuel choices. Typical restraints are decrease in Wobbe-index and surge- and flutter-margins for turbomachinery. In this study, an advanced performance deck has been used to quantify the impact of firing low-LHV gases in a generic type gas turbine. A single-shaft gas turbine characterized by a compressor and an expander map is considered. Emphasis has been put on predicting the off-design behavior. The combustor is discussed and related to previous experiments which include investigation of flammability limits, Wobbe-index, flame position, etc. The computations show that at constant turbine inlet temperature (TIT), the shaft power and the pressure ratio will increase, however the surge margin will decrease. Possible design changes in the component level are also discussed. Aerodynamic issues (and necessary modifications) that can pose severe limitations on the gas turbine compressor- and turbine sections are discussed. Typical methods for axial turbine capacity adjustment are presented and discussed.


2005 ◽  
Vol 127 (2) ◽  
pp. 340-347 ◽  
Author(s):  
Alberto Traverso ◽  
Federico Calzolari ◽  
Aristide Massardo

Microturbines have a less complex mechanical design than large-size gas turbines that should make it possible to fit them with a more straightforward control system. However, these systems have very low shaft mechanical inertia and a fast response to external disturbances, such as load trip, that make this very difficult to do. Furthermore, the presence of the recuperator requires smooth variations to the Turbine Outlet Temperature (TOT), when possible, to ensure reduced thermal stresses to the metallic matrix. This paper, after a brief overview of microturbine control systems and typical transients, presents the expected transient behavior of two advanced cycles: the Externally Fired micro Gas Turbine (EFmGT) cycle, where the aim is to develop a proper control system set-up to manage safe part-load operations at constant rotational speed, and a solar Closed Brayton Cycle (CBC), whose control system has to ensure the maximum efficiency at constant rotational speed and constant Turbine Inlet Temperature (TIT).


Author(s):  
A. M. Bassily

An absorption inlet cooling system is introduced into the recuperated gas turbine cycle. The exhaust gases of the cycle are used to run the system. Five different layouts of the recuperated gas turbine cycle are presented. These include the effects of absorption inlet cooling, evaporative inlet cooling and evaporative cooling of compressor discharge (evaporative aftercooling), and the combined effect of absorption inlet cooling and evaporative aftercooling. A parametric study of the effect of pressure ratio, ambient temperature and relative humidity on the performance of all cycles is carried out. The results indicate that absorption inlet cooling could increase the efficiency of the recuperated cycle by up to 4 per cent, compared with 2.2 per cent for evaporative inlet cooling. Absorption inlet cooling with evaporative aftercooling could increase the optimum per efficiency of the recuperated cycle by up to 5 per cent and its maximum power by up to 65 per cent. Evaporative aftercooling reduces the impact of inlet cooling. Another parametric study of the effect of the turbine compressor inlet temperature ratio on the optimum pressure ratios indicated that cycles with evaporative aftercooling have higher optimum pressure ratios, which could be a function of the inlet temperature ratio and air temperature at the compressor outlet.


Author(s):  
Alberto Traverso ◽  
Federico Calzolari ◽  
Aristide Massardo

Microturbines have a less complex mechanical design than large-size gas turbines that should make it possible to fit them with a more straightforward control system. However, these systems have very low shaft mechanical inertia and a fast response to external disturbances, such as load trip, that make this very difficult to do. Furthermore, the presence of the recuperator requires smooth variations to the Turbine Outlet Temperature (TOT), when possible, to ensure reduced thermal stresses to the metallic matrix. This paper, after a brief overview of microturbine control systems and typical transients, presents the expected transient behavior of two advanced cycles: the Externally Fired micro Gas Turbine (EFmGT) cycle, where the aim is to develop a proper control system set-up to manage safe part-load operations at constant rotational speed, and a solar Closed Brayton Cycle (CBC), whose control system has to ensure the maximum efficiency at constant rotational speed and constant Turbine Inlet Temperature (TIT).


Author(s):  
R. E. Covert ◽  
J. M. Krase ◽  
D. C. Morse

The performance and principal operating characteristics of the Gas Turbine HTGR power plant are reported. The reference design of the dry cooled 1100-MW(e) power plant incorporates four helium gas turbine power conversion loops integrated into the prestressed concrete reactor vessel, which also contains the reactor and the entire primary coolant system. The reactor core is virtually the same as that for the comparable HTGR steam cycle and is operated with similar maximum fuel temperatures, resulting in a turbine inlet temperature of 1500 F (816 C). An overall plant efficiency of about 37 percent is realized with a design point cycle pressure ratio of 2.35 and with a high-effectiveness recuperator in each loop. Component performance and cycle performance calculations are discussed. The variation of plant performance with ambient temperature is described. Three distinct control modes are described which are, in order of decreasing part-load efficiency, helium inventory control, reactor outlet temperature control, and bypass flow (compressor outlet to turbine outlet) control. The latter offers the most rapid control of plant output. Also described is the standard operating control mode which combines reactor outlet temperature and bypass controls to facilitate both ramp and step load changes.


1978 ◽  
Vol 100 (4) ◽  
pp. 640-646 ◽  
Author(s):  
P. Donovan ◽  
T. Cackette

A set of factors which reduces the variability due to ambient conditions of the hydrocarbon, carbon monoxide, and oxides of nitrogen emission indices has been developed. These factors can be used to correct an emission index to reference day ambient conditions. The correction factors, which vary with engine rated pressure ratio for NOx and idle pressure ratio for HC and CO, can be applied to a wide range of current technology gas turbine engines. The factors are a function of only the combustor inlet temperature and ambient humidity.


Sign in / Sign up

Export Citation Format

Share Document