Impact of Fuel Flexibility Needs on a Selected GT Performance in IGCC Application

Author(s):  
Mohammad Mansouri Majoumerd ◽  
Peter Breuhaus ◽  
Jure Smrekar ◽  
Mohsen Assadi ◽  
Carmine Basilicata ◽  
...  

As part of a European Union (EU) funded H2-IGCC project, a baseline IGCC power plant was established; this was presented at the ASME Turbo Expo 2011 (GT2011-45701). The current paper focuses on a detailed investigation of the impact of using various fuels considering different operating conditions on the gas turbine performance, and the identification of technical solutions for the realization of the targeted fuel flexibility. Using a lumped model, based on real engine data, compressor and turbine maps of the targeted engine were generated and implemented into the detailed GT model made in the commercial heat and mass balance program, IPSEpro. The implementation was done in terms of look-up tables. The impact of fuel change on the gas turbine island has been investigated and reported in this paper. Calculation results show that for the given boundary conditions, the surge margin of the compressor was slightly reduced when natural gas was replaced by hydrogen-rich syngas. The use of cleaned syngas instead of hydrogen-rich syngas resulted in a considerable reduction of the surge margin and elevation of the turbine outlet temperature (TOT) at design point conditions, when keeping the turbine inlet temperature (TIT) and compressor inlet mass flow unchanged. To maintain the TOT and improve the surge margin, when operating the engine with cleaned syngas, a combination of adjustment of variable inlet guide vanes (VIGV) and reduced TIT was considered. A parameter study was carried out to provide better understanding of the current limitations of the engine and to identify possible modifications to improve fuel flexibility.

Author(s):  
Kexin Liu ◽  
Phill Hubbard ◽  
Suresh Sadasivuni ◽  
Ghenadie Bulat

Extension of gas fuel flexibility of a current production SGT-400 industrial gas turbine combustor system is reported in this paper. A SGT-400 engine with hybrid combustion system configuration to meet a customer's specific requirements was string tested. This engine was tested with the gas turbine package driver unit and the gas compressor-driven unit to operate on and switch between three different fuels with temperature-corrected Wobbe index (TCWI) varying between 45 MJ/m3, 38 MJ/m3, and 30 MJ/m3. The alteration of fuel heating value was achieved by injection or withdrawal of N2 into or from the fuel system. The results show that the engine can maintain stable operation on and switching between these three different fuels with fast changeover rate of the heating value greater than 10% per minute without shutdown or change in load condition. High-pressure rig tests were carried out to demonstrate the capabilities of the combustion system at engine operating conditions across a wide range of ambient conditions. Variations of the fuel heating value, with Wobbe index (WI) of 30 MJ/Sm3, 33 MJ/Sm3, 35 MJ/Sm3, and 45 MJ/Sm3 (natural gas, NG) at standard conditions, were achieved by blending NG with CO2 as diluent. Emissions, combustion dynamics, fuel pressure, and flashback monitoring via measurement of burner metal temperatures, were the main parameters used to evaluate the impact of fuel flexibility on combustor performance. Test results show that NOx emissions decrease as the fuel heating value is reduced. Also note that a decreasing fuel heating value leads to a requirement to increase the fuel supply pressure. Effect of fuel heating value on combustion was investigated, and the reduction in adiabatic flame temperature and laminar flame speed was observed for lower heating value fuels. The successful development program has increased the capability of the SGT-400 standard production dry low emissions (DLE) burner configuration to operate with a range of fuels covering a WI corrected to the normal conditions from 30 MJ/N·m3 to 49 MJ/N·m3. The tests results obtained on the Siemens SGT-400 combustion system provide significant experience for industrial gas turbine burner design for fuel flexibility.


2016 ◽  
Vol 5 (2) ◽  
pp. 25-44
Author(s):  
Saria Abed ◽  
Taher Khir ◽  
Ammar Ben Brahim

In this paper, thermodynamic study of simple and regenerative gas turbine cycles is exhibited. Firstly, thermodynamic models for both cycles are defined; thermal efficiencies of both cycles are determined, the overall heat transfer coefficient through the heat exchanger is calculated in order to determinate its performances and parametric study is carried out to investigate the effects of compressor inlet temperature, turbine inlet temperature and compressor pressure ratio on the parameters that measure cycles' performance. Subsequently, numerical optimization is established through EES software to determinate operating conditions. The results of parametric study have shown a significant impact of operating parameters on the performance of the cycle. According to this study, the regeneration technique improves the thermal efficiency by 10%. The studied regenerator has an important effectiveness (˜ 82%) which improves the heat transfer exchange; also a high compressor pressure ratio and an important combustion temperature can increase thermal efficiency.


Author(s):  
Kristin Jordal ◽  
Olav Bolland ◽  
A˚ke Klang

In order to capture the behaviour of the oxyfuel cycle operating with high combustor-outlet temperature, the impact of blade and vane cooling on cycle performance must be included in the thermodynamic model. As a basis for a future transient model, three thermodynamic models for the cooled gas turbine are described and compared. The first model, known previously from the literature, models expansion as a continuous process with simultaneous heat and work extraction. The second model is a simple stage-by-stage model and the third is a more detailed stage-by-stage model that includes velocity triangles and enables the use of advanced loss correlations. An airbreathing aeroderivative gas turbine is modelled, and the same gas turbine operating in an oxyfuel cycle is studied. The two simple models show very similar performance trends in terms of variation of pressure ratio and turbine inlet temperature in both cases. With the more detailed model, it was found that, without any change of geometry, the turbine rotational speed increases significantly and performance drops for the maintained geometry and pressure ratio. A tentative increase of blade angles or compressor pressure ratio is found to increase turbine performance and decrease rotational speed. This indicates that a turbine will require re-design for operation in the oxyfuel cycle.


2004 ◽  
Vol 126 (3) ◽  
pp. 507-515 ◽  
Author(s):  
Kristin Jordal ◽  
Olav Bollard ◽  
Ake Klang

In order to capture the behavior of the oxyfuel cycle operating with high combustor-outlet temperature, the impact of blade and vane cooling on cycle performance must be included in the thermodynamic model. As a basis for a future transient model, three thermodynamic models for the cooled gas turbine are described and compared. The first model, known previously from the literature, models expansion as a continuous process with simultaneous heat and work extraction. The second model is a simple stage-by-stage model and the third is a more detailed stage-by-stage model that includes velocity triangles and enables the use of advanced loss correlations. An airbreathing aeroderivative gas turbine is modeled, and the same gas turbine operating in an oxyfuel cycle is studied. The two simple models show very similar performance trends in terms of variation of pressure ratio and turbine inlet temperature in both cases. With the more detailed model, it was found that, without any change of geometry, the turbine rotational speed increases significantly and performance drops for the maintained geometry and pressure ratio. A tentative increase of blade angles or compressor pressure ratio is found to increase turbine performance and decrease rotational speed. This indicates that a turbine will require redesign for operation in the oxyfuel cycle.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 389
Author(s):  
Jinfu Liu ◽  
Zhenhua Long ◽  
Mingliang Bai ◽  
Linhai Zhu ◽  
Daren Yu

As one of the core components of gas turbines, the combustion system operates in a high-temperature and high-pressure adverse environment, which makes it extremely prone to faults and catastrophic accidents. Therefore, it is necessary to monitor the combustion system to detect in a timely way whether its performance has deteriorated, to improve the safety and economy of gas turbine operation. However, the combustor outlet temperature is so high that conventional sensors cannot work in such a harsh environment for a long time. In practical application, temperature thermocouples distributed at the turbine outlet are used to monitor the exhaust gas temperature (EGT) to indirectly monitor the performance of the combustion system, but, the EGT is not only affected by faults but also influenced by many interference factors, such as ambient conditions, operating conditions, rotation and mixing of uneven hot gas, performance degradation of compressor, etc., which will reduce the sensitivity and reliability of fault detection. For this reason, many scholars have devoted themselves to the research of combustion system fault detection and proposed many excellent methods. However, few studies have compared these methods. This paper will introduce the main methods of combustion system fault detection and select current mainstream methods for analysis. And a circumferential temperature distribution model of gas turbine is established to simulate the EGT profile when a fault is coupled with interference factors, then use the simulation data to compare the detection results of selected methods. Besides, the comparison results are verified by the actual operation data of a gas turbine. Finally, through comparative research and mechanism analysis, the study points out a more suitable method for gas turbine combustion system fault detection and proposes possible development directions.


Author(s):  
Tim Lieuwen ◽  
Vince McDonell ◽  
Eric Petersen ◽  
Domenic Santavicca

This paper addresses the impact of fuel composition on the operability of lean premixed gas turbine combustors. This is an issue of current importance due to variability in the composition of natural gas fuel supplies and interest in the use of syngas fuels. Of particular concern is the effect of fuel composition on combustor blowout, flashback, dynamic stability, and autoignition. This paper reviews available results and current understanding of the effects of fuel composition on the operability of lean premixed combustors. It summarizes the underlying processes that must be considered when evaluating how a given combustor’s operability will be affected as fuel composition is varied.


Author(s):  
Fan Gong ◽  
Yong Huang

The objective of this work is to investigate the flame stabilization mechanism and the impact of the operating conditions on the characteristics of the steady, lean premixed flames. It’s well known that the flame base is very important to the existence of a flame, such as the flame after a V-gutter, which is typically used in ramjet and turbojet or turbofan afterburners and laboratory experiments. We performed two-dimensional simulations of turbulent premixed flames anchored downstream of the heat-conducting V-gutters in a confined passage for kerosene-air combustion. The flame bases are symmetrically located in the shear layers of the recirculation zone immediately after the V-gutter’s trailing edge. The effects of equivalence ratio of inlet mixture, inlet temperature, V-gutter’s thermal conductivity and inlet velocity on the flame base movements are investigated. When the equivalence ratio is raised, the flame base moves upstream slightly and the temperature gradient dT/dx near the flame base increases, so the flame base is strengthened. When the inlet temperature is raised, the flame base moves upstream very slightly, and near the flame base dT/dx increases and dT/dy decreases, so the flame base is strengthened. As the V-gutter’s thermal conductivity increases, the flame base moves downstream, and the temperature gradient dT/dx near the flame base decreases, so the flame base is weakened. When the inlet velocity is raised, the flame base moves upstream, and the convection heat loss with inlet mixture increases, so the flame base is weakened.


Author(s):  
Helmer G. Andersen ◽  
Pen-Chung Chen

Computing the solution to the energy balance around a gas turbine in order to calculate the intake mass flow and the turbine inlet temperature requires several iterations. This makes hand calculations very difficult and, depending on the software used, even causes significant calculation times on PCs. While this may not seem all that important considering the power of today’s personal computers, the approach described in this paper presents a new way of looking at the gas turbine process and the resulting simplifications in the calculations. This paper offers a new approach to compute the energy balance around a gas turbine. The energy balance requires that all energy flows going into and out of the control volume be accounted for. The difficulty of the energy balance equation around a gas turbine lies in the fact that the exhaust gas composition is unknown as long as the intake flow is unknown. Thus, a composition needs to be assumed when computing the exhaust gas enthalpy. This allows the calculation of the intake flow, which in turn provides a new exhaust gas composition, and so forth. By viewing the exhaust gas as a flow consisting of ambient air and combusted fuel, the described iteration can be avoided. The study presents the formulation of the energy balance applying this approach and looks at the accuracy of the result as a function of the inaccuracy of the input parameters. Furthermore, solutions of the energy balance are presented for various process scenarios, and the impact of the uncertainty of key process parameter is analyzed.


Author(s):  
S. James ◽  
M. S. Anand ◽  
B. Sekar

The paper presents an assessment of large eddy simulation (LES) and conventional Reynolds averaged methods (RANS) for predicting aero-engine gas turbine combustor performance. The performance characteristic that is examined in detail is the radial burner outlet temperature (BOT) or fuel-air ratio profile. Several different combustor configurations, with variations in airflows, geometries, hole patterns and operating conditions are analyzed with both LES and RANS methods. It is seen that LES consistently produces a better match to radial profile as compared to RANS. To assess the predictive capability of LES as a design tool, pretest predictions of radial profile for a combustor configuration are also presented. Overall, the work presented indicates that LES is a more accurate tool and can be used with confidence to guide combustor design. This work is the first systematic assessment of LES versus RANS on industry-relevant aero-engine gas turbine combustors.


Author(s):  
V. Prakash ◽  
J. Steimes ◽  
D. J. E. M. Roekaerts ◽  
S. A. Klein

The increasing amount of renewable energy and emission norms challenge gas turbine power plants to operate at part-load with high efficiency, while reducing NOx and CO emissions. A novel solution to this dilemma is external Flue Gas Recirculation (FGR), in which flue gases are recirculated to the gas turbine inlet, increasing compressor inlet temperature and enabling higher part load efficiencies. FGR also alters the oxidizer composition, potentially leading to reduced NOx levels. This paper presents a kinetic model using chemical reactor networks in a lean premixed combustor to study the impact of FGR on emissions. The flame zone is split in two perfectly stirred reactors modelling the flame front and the recirculation zone. The flame reactor is determined based on a chemical time scale approach, accounting for different reaction kinetics due to FGR oxidizers. The recirculation zone is determined through empirical correlations. It is followed by a plug flow reactor. This method requires less details of the flow field, has been validated with literature data and is generally applicable for modelling premixed flames. Results show that due to less O2 concentration, NOx formation is inhibited down to 10–40% and CO levels are escalated up to 50%, for identical flame temperatures. Increasing combustor pressure leads to a rise in NOx due to thermal effects beyond 1800 K, and a drop in CO levels, due to the reduced chemical dissociation of CO2. Wet FGR reduces NOx by 5–10% and increases CO by 10–20%.


Sign in / Sign up

Export Citation Format

Share Document