A Study on Local Heat Transfer Enhancement in a Rectangular Dimpled Channel With a Large Aspect Ratio

Author(s):  
Diane Lauffer ◽  
Bernhard Weigand ◽  
Roland Liebe

In this paper the convective heat transfer in a rectangular dimpled channel with an aspect ratio of six is studied. Applications could be for gas turbine vanes, vane shrouds, ring segments and hot components in the combustor. Basic heat transfer experiments have been performed using heater foils and a steady-state method with liquid crystals. The cooling effect is achieved by a dimple configuration combined with rib turbulators. The specific subject of this study is to focus on the heat transfer enhancement in the corner regions of the dimpled large aspect ratio channel. Different configurations of rib turbulators are investigated at different Reynolds numbers. Detailed heat transfer distributions are presented for the different configurations, showing the local effect of turbulator placement and angle with respect to the main flow direction. They are complemented by pressure drop measurements and compared with numerical simulations. It is shown that locally implemented rib configurations can enhance the heat transfer in these critical regions without large pressure loss penalties.

Author(s):  
I-Lun Chen ◽  
Izzet Sahin ◽  
Lesley M. Wright ◽  
Je-Chin Han ◽  
Robert Krewinkel

Abstract The thermal performance of two V-type rib configurations is measured in a rotating, two-pass cooling channel. Modeling modern, high pressure, turbine blades, the cross-section of the cooling channel varies from the first pass to the second pass. The coolant travels radially outward in the rectangular first pass with an aspect ratio of 4:1. Near the tip region, the coolant turns 180°, and travels radially inward in a 2:1 rectangular channel. The serpentine passage is positioned such that both the first and second passes are oriented 90° to the direction of rotation. The leading and trailing surfaces of both the first and second pass of the channel are roughened with V-type rib turbulators. The thermal performance of two V-type configurations is measured in this two-pass channel. The first V-shaped configuration is similar to a traditional V-shaped turbulator with a narrow gap at the apex of the V. The configuration is modified by off-setting one leg of the V to create a staggered discrete, V-shaped configuration. The ribs are oriented 45° relative to the streamwise coolant direction. In both passes, the rib spacing is P/e = 10 and the rib height – to – channel height is e/H = 0.16. The heat transfer enhancement and frictional losses are measured for both rib configurations with varying Reynolds and rotation numbers. The Reynolds number varies from 10,000 to 45,000 in the AR = 4:1 first pass; this corresponds to 16,000 to 73,500 in the AR = 2:1 second pass. Considering the effect of rotation, the rotational speed of the channel varies from 0–400 rpm with maximum rotation numbers of 0.39 and 0.16 in the first and second passes, respectively. The heat transfer enhancement on both the leading and trailing surfaces of the first pass of the 45° V-shaped channel is slightly reduced with rotation. In the second pass, the heat transfer increases on the leading surface while it decreases on the trailing surface. The 45° staggered, discrete V-shaped ribs provide increased heat transfer and thermal performance compared to the traditional V-shaped and standard, 45° angled rib turbulators.


Author(s):  
Michael Huh ◽  
Yao-Hsien Liu ◽  
Je-Chin Han ◽  
Sanjay Chopra

The focus of the current study was to determine the effects of rib spacing on heat transfer in rotating 1:4 AR channels. In the current study, heat transfer experiments were performed in a two-pass, 1:4 aspect ratio channel, with a sharp bend entrance. The channel leading and trailing walls in the first pass and second pass utilized angled rib turbulators (45° to the mainstream flow). The rib height-to-hydraulic diameter ratio (e/Dh) was held constant at 0.078. The channel was oriented 90° to the direction of rotation. Three rib pitch-to-rib height ratios (P/e) were studied: P/e = 2.5, 5, and 10. Each ratio was tested at five Reynolds numbers: 10K, 15K, 20K, 30K and 40K. For each Reynolds number, experiments were conducted at five rotational speeds: 0, 100, 200, 300, and 400 rpm. Results showed that the sharp bend entrance has a significant effect on the first pass heat transfer enhancement. In the second pass, the rib spacing and rotation effect are reduced. The P/e = 10 case had the highest heat transfer enhancement based on total area, whereas the P/e = 2.5 had the highest heat transfer enhancement based on the projected area. The current study has extended the range of the rotation number (Ro) and local buoyancy parameter (Box) for a ribbed 1:4 aspect ratio channel up to 0.65 and 1.5, respectively. Correlations for predicting heat transfer enhancement, due to rotation, in the ribbed (P/e = 2.5, 5, and 10) 1:4 aspect ratio channel, based on the extended range of the rotation number and buoyancy parameter, are presented in the paper.


Author(s):  
Pavin Ganmol ◽  
Minking K. Chyu

Described in this paper is an experimental investigation of the heat transfer and pressure characteristics in a high aspect ratio, (4.5:1 width-to-height), two-pass channel, with cube-shaped and diamond-shaped block arrays placed in both passes before and after a 180-degree sharp turn. Transient liquid crystal technique was applied to acquire detailed local heat transfer data on both the channel surfaces and the block elements. Reynolds number tested varies between 13000 and 28000. To further explore potential design alternatives for enhancement cooling, the effects of block height, ranging from 1/4, 1/2, 3/4 and full span of the channel height were also evaluated. Present results suggest that a staggered cube-array can enhance heat transfer rate up to 3.5 fold in the first pass and about 1.9 fold in the second pass, relative to the fully-developed smooth channel counterpart. For the corresponding diamond-shaped block array, the enhancement is 3.4 and 1.9 fold respectively. Even though the post-turn turbulence transport in the second pass is generally higher than that in the first pass, the effects of surface-block induced heat transfer enhancement in fact are less prominent in the post-turn region of the second pass. Pressure loss for diamond block arrays is generally higher than that of the corresponding cube-block arrays.


Author(s):  
Sin Chien Siw ◽  
Minking K. Chyu ◽  
Mary Anne Alvin

This paper described a detailed experimental study to explore an internal cooling passage that mimic a “zig-zag” pattern. There are four passages connected by 110° turning angle in a periodic fashion, hence the name. Experiments are performed in a scaled-up test channel with a cross-section of 63.5mm by 25.4mm, corresponding to the aspect ratio of 2.5:1. Compared to the conventional straight internal cooling passages, the zig-zag channel with several turns will generate additional secondary vortices while providing longer flow path that allows coolant to remove much more heat load prior to discharge into the hot mainstream. Surface features, (1) dimples, and (2) protrusions are added to the zig-zag channel to further enhance the heat transfer, while contributed to larger wetted area. The experiment utilizes the well-established transient liquid crystal technique to determine the local heat transfer coefficient distribution of the entire zig-zag channel. Protrusions exhibit higher heat transfer enhancement than that of dimples. However, both designs proved to be inferior compared to the rib-turbulators. Pressure loss in these test channels is approximately twofold higher than that of straight smooth test channel due to the presence of turns; but the pressure loss is lower than the zig-zag channel with rib-turbulators. The result revealed that one advantage of having either protrusions or dimples as these surface elements will resulted in gradual and more uniform increment of heat transfer throughout the entire channel compared to previous test cases.


Author(s):  
J.-J. Hwang ◽  
C.-S. Cheng ◽  
Y.-P. Tsia

An experimental study has been performed to measure local heat transfer coefficients and static well pressure drops in leading-edge triangular ducts cooled by wall/impinged jets. Coolant provided by an array of equally spaced wall jets is aimed at the leading-edge apex and exits from the radial outlet. Detailed heat transfer coefficients are measured for the two walls forming the apex using transient liquid crystal technique. Secondary-flow structures are visualized to realize the mechanism of heat transfer enhancement by wall/impinged jets. Three right-triangular ducts of the same altitude and different apex angles of β = 30 deg (Duct A), 45 deg (Duct B) and 60 deg (Duct C) are tested for various jet Reynolds numbers (3000≦Rej≦12600) and jet spacings (s/d = 3.0 and 6.0). Results show that an increase in Rej increases the heat transfer on both walls. Local heat transfer on both walls gradually decreases downstream due to the crossflow effect. At the same Rej, the Duct C has the highest wall-averaged heat transfer because of the highest jet center velocity as well as the smallest jet inclined angle. Moreover, the distribution of static pressure drop based on the local through flow rate in the present triangular duct is similar to that that of developing straight pipe flows. Average jet Nusselt numbers on the both walls have been correlated with jet Reynolds number for three different duct shapes.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Sébastien Kunstmann ◽  
Jens von Wolfersdorf ◽  
Uwe Ruedel

An investigation was conducted to assess the thermal performance of W-shaped, 2W-shaped and 4W-shaped ribs in a rectangular channel. The aspect ratios (W/H) were 2:1, 4:1, and 8:1. The ribs were located on one channel wall. The rib height (e) was kept constant with a rib height-to-hydraulic diameter ratio (e/Dh) of 0.02, 0.03, and 0.06. The rib pitch-to-height ratio (P/e) was 10. The Reynolds numbers investigated (Re > 90 000) are typical for combustor liner cooling configurations of gas turbines. Local heat transfer coefficients using the transient thermochromic liquid crystal technique and overall pressure losses were measured. The rib configurations were investigated numerically to visualize the flow pattern in the channel and to support the understanding of the experimental data. The results show that the highest heat transfer enhancement is obtained by rib configurations with a rib section-to-channel height ratio (Wr/H) of 1:1. W-shaped ribs achieve the highest heat transfer enhancement levels in channels with an aspect ratio of 2:1, 2W-shaped ribs in channels with an aspect ratio of 4:1 and 4W-shaped ribs in channels with an aspect ratio of 8:1. Furthermore, the pressure loss increases with increasing complexity of the rib geometry and blockage ratio.


Author(s):  
Ken-Ichiro Takeishi ◽  
Robert Krewinkel ◽  
Yutaka Oda ◽  
Yuichi Ichikawa

In the near future, when designing and using Double Wall Airfoils, which will be manufactured by 3D printers, the positional relationship between the impingement cooling nozzle and the heat transfer enhancement ribs on the target plate naturally becomes more accurate. Taking these circumstances into account, an experimental study was conducted to enhance the heat transfer of the wall jet region of a round impingement jet cooling system. This was done by installing circular ribs or vortex generators (VGs) in the impingement cooling wall jet region. The local heat transfer coefficient was measured using the naphthalene sublimation method, which utilizes the analogy between heat and mass transfer. As a result, it was clarified that, within the ranges of geometries and Reynolds numbers at which the experiments were conducted, it is possible to improve the averaged Nusselt number Nu up to 21% for circular ribs and up to 51% for VGs.


Sign in / Sign up

Export Citation Format

Share Document