Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film Cooled Endwall

Author(s):  
Giovanna Barigozzi ◽  
Giuseppe Benzoni ◽  
Giuseppe Franchini ◽  
Antonio Perdichizzi

The present paper investigates the effects of a fan-shaped hole endwall cooling geometry on the aero-thermal performance of a nozzle vane cascade. Two endwall cooling geometries with four rows of holes were tested, for different mass flow rate ratios: the first configuration is made of cylindrical holes, whereas the second one features conical expanded exits and a reduced number of holes. The experimental analysis is mainly focused on the variations of secondary flow phenomena related to different injection rates, as they have a strong relationship with the film cooling effectiveness. Secondary flow assessment was performed through downstream 3D aerodynamic measurements, by means of a miniaturized 5-hole probe. The results show that at high injection rates, the passage vortex and the 3D effects tend to become weaker, leading to a strong reduction of the endwall cross flow and to a more uniform flow in spanwise direction. This is of course obtained at the expense of a significant increase of losses. The thermal behavior was then investigated through the analysis of adiabatic effectiveness distributions on the two endwall configurations. The wide banded TLC’s technique was used to determine the adiabatic wall temperature. Using the measured distributions of film cooling adiabatic effectiveness, the interaction between the secondary flow vortices and the cooling jets can be followed in good detail all over the endwall surface. Fan-shaped holes have been shown to perform better than cylindrical ones: at low injection rates, the cooling performance is increased only in the front part of the vane passage. A larger improvement of cooling coverage all over the endwall is attained with a larger mass flow rate, about 1.5% of core flow, without a substantial increase of the aerodynamic losses.

2005 ◽  
Vol 128 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Giovanna Barigozzi ◽  
Giuseppe Benzoni ◽  
Giuseppe Franchini ◽  
Antonio Perdichizzi

The present paper investigates the effects of a fan-shaped hole endwall cooling geometry on the aero-thermal performance of a nozzle vane cascade. Two endwall cooling geometries with four rows of holes were tested, for different mass flow rate ratios: the first configuration is made of cylindrical holes, whereas the second one features conical expanded exits and a reduced number of holes. The experimental analysis is mainly focused on the variations of secondary flow phenomena related to different injection rates, as they have a strong relationship with the film cooling effectiveness. Secondary flow assessment was performed through downstream 3D aerodynamic measurements, by means of a miniaturized 5-hole probe. The results show that at high injection rates, the passage vortex and the 3D effects tend to become weaker, leading to a strong reduction of the endwall cross flow and to a more uniform flow in spanwise direction. This is of course obtained at the expense of a significant increase of losses. The thermal behavior was then investigated through the analysis of adiabatic effectiveness distributions on the two endwall configurations. The wide-banded thermochromic liquid crystals (TLC) technique was used to determine the adiabatic wall temperature. Using the measured distributions of film-cooling adiabatic effectiveness, the interaction between the secondary flow vortices and the cooling jets can be followed in good detail all over the endwall surface. Fan-shaped holes have been shown to perform better than cylindrical ones: at low injection rates, the cooling performance is increased only in the front part of the vane passage. A larger improvement of cooling coverage all over the endwall is attained with a larger mass flow rate, about 1.5% of core flow, without a substantial increase of the aerodynamic losses.


2021 ◽  
Author(s):  
Nathan D. Fier ◽  
David G. Bogard

Abstract Discrete film cooling holes are limited by subtractive manufacturing techniques and experience depreciating performance when operating above critical velocity ratios. This study introduces an alternative method of bringing coolant to the surface of the blade via finite strips of porous material interlaced throughout the blade, made possible by advances in additive manufacturing (AM). Both experimental and computational studies were performed on the porous hybrid configuration to characterize downstream and off-wall performance, where experimental adiabatic effectiveness values were achieved using a plastic, fused deposition printed lattice structure. The method of bringing coolant onto the surface of the blade through an additively manufactured porous region experienced downstream adiabatic effectiveness values similar to slots while providing better structural stability. Additionally, the hybrid configuration outperformed shaped film cooling holes by injecting an ultra-thin layer of coolant that was evenly distributed span-wise across the blade. When operating at VRhybrid = 0.052 and L/d = 2 the hybrid configuration produced spatially averaged values 30% greater than the shaped holes while using equivalent coolant mass flow rate. Also, for an L/d = 10, the spatially averaged adiabatic effectiveness, for the hybrid configuration, is a factor of three greater than for shaped film cooling holes, while requiring a five times greater coolant mass flow rate. Finally, the RANS computational model accurately predicted downstream effectiveness values, at low velocity ratios, within experimental uncertainty but showed inaccuracies when predicting off wall effectiveness values and at higher velocity ratios.


2006 ◽  
Vol 129 (2) ◽  
pp. 212-220 ◽  
Author(s):  
Giovanna Barigozzi ◽  
Giuseppe Franchini ◽  
Antonio Perdichizzi

The present paper reports on the aerothermal performance of a nozzle vane cascade, with film-cooled end walls. The coolant is injected through four rows of cylindrical holes with conical expanded exits. Two end-wall geometries with different area ratios have been compared. Tests have been carried out at low speed (M=0.2), with coolant to mainstream mass flow ratio varied in the range 0.5–2.5%. Secondary flow assessment has been performed through three-dimensional (3D) aerodynamic measurements, by means of a miniaturized five-hole probe. Adiabatic effectiveness distributions have been determined by using the wide-band thermochromic liquid crystals technique. For both configurations and for all the blowing conditions, the coolant share among the four rows has been determined. The aerothermal performances of the cooled vane have been analyzed on the basis of secondary flow effects and laterally averaged effectiveness distributions; this analysis was carried out for different coolant mass flow ratios. It was found that the smaller area ratio provides better results in terms of 3D losses and secondary flow effects; the reason is that the higher momentum of the coolant flow is going to better reduce the secondary flow development. The increase of the fan-shaped hole area ratio gives rise to a better coolant lateral spreading, but appreciable improvements of the adiabatic effectiveness were detected only in some regions and for large injection rates.


2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 487-494 ◽  
Author(s):  
Aminreza Noghrehabadi ◽  
Ebrahim Hajidavaloo ◽  
Mojtaba Moravej ◽  
Ali Esmailinasab

Solar collectors are the key part of solar water heating systems. The most widely produced solar collectors are flat plate solar collectors. In the present study, two types of flat plate collectors, namely square and rhombic collectors are experi?mentally tested and compared and the thermal performance of both collectors is investigated. The results show both collectors have the same performance around noon (?61%), but the rhombic collector has better performance in the morning and afternoon. The values for rhombic and square collectors are approximately 56.2% and 53.5% in the morning and 56.1% and 54% in the afternoon, respectively. The effect of flow rate is also studied. The thermal efficiency of rhombic and square flat plate collectors increases in proportion to the flow rate. The results indicated the rhombic collector had better performance in comparison with the square collector with respect to the mass-flow rate.


Author(s):  
Nikhil M. Rao ◽  
Cengiz Camci

An experimental study of a turbine tip desensitization method based on tip coolant injection was conducted in a large-scale rotating turbine rig. One of twenty-nine rotor blades was modified and instrumented to have a tip trench with discrete injection holes directed towards the pressure side. Time accurate absolute total pressure was measured 0.3 chord lengths downstream of the rotor exit plane using a fast response dynamic pressure sensor in a phase-locked manner. The test cases presented include results for tip gap heights of 1.40% and 0.72% of the blade height, and coolant injection rates of 0.41%, 0.52%, 0.63%, and 0.72% core mass flow rate. At a gap height of 1.40% the leakage vortex is large, occupying about 15% blade span. A reduction in gap height causes the leakage vortex to reduce in size and move towards the blade suction side. The minimum total pressure measured, for the reduced gap, in the leakage vortex is about 4% greater. Coolant injection from the tip trench is successful in filling in the total pressure defect originally resulting from the leakage vortex without injection. At the higher tip injection rates the leakage vortex is also seen to have moved towards the blade tip. The high momentum associated with the tip jets affects the total pressure distributions in the neighboring passages.


2014 ◽  
Vol 592-594 ◽  
pp. 2416-2421
Author(s):  
R.N. Kokila ◽  
S. Rajakumar

The main objective of this paper is to analyze the thermal performance of direct expansion solar assisted heat pump DX-SAHP(A) by numerical simulation in MATLAB and comparing it with the thermal performance of DX-SAHP(B) which has an optimized collector area and mass flow rate. Optimization is performed for high exergy efficiency using Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) optimization technique. The flat plate collector of solar water heater is used as the evaporator with refrigerant (R22).With the optimized value of mass flow rate as 0.055 kg/sec, width as 0.03 m and diameter of riser tubes as 0.021 m the performance of the optimized system has a maximum COP of 6.85 which is greater than the COP of DX-SAHP(A) and the final water temperature of is obtained 100 minutes earlier in the optimized system i.e. DX-SAHP(B) with compressor work less than the system A


Author(s):  
Giovanna Barigozzi ◽  
Giuseppe Franchini ◽  
Antonio Perdichizzi

The present paper reports on the aero-thermal performance of a nozzle vane cascade, with film cooled endwalls. The coolant is injected through four rows of cylindrical holes with conical expanded exits. Two endwall geometries with different area ratios have been compared. Tests have been carried out at low speed (M = 0.2), with coolant to mainstream mass flow ratio varied in the range 0.5–2.5%. Secondary flow assessment has been performed through 3D aerodynamic measurements, by means of a miniaturized 5-hole probe. Adiabatic effectiveness distributions have been determined by using the wide banded thermochromic liquid crystals (TLC) technique. For both configurations and for all the blowing conditions, the coolant share among the four rows has been determined. The aerothermal performance of the cooled vane have been analyzed on the basis of secondary flow effects and laterally averaged effectiveness distributions; this analysis was carried out for different coolant mass flow ratios. It was found that the smaller area ratio provides better results in terms of 3D losses and secondary flow effects; the reason is that the higher momentum of the coolant flow is going to better reduce the secondary flow development. The increase of the fan-shaped hole area ratio gives rise to a better coolant lateral spreading, but appreciable improvements of the adiabatic effectiveness were detected only in some regions and for large injection rates.


Sign in / Sign up

Export Citation Format

Share Document