Unsteady Aerodynamic Blade Excitation at the Stability Limit and During Rotating Stall in an Axial Compressor

Author(s):  
Ronald Mailach ◽  
Konrad Vogeler

The stable operating range of axial compressors is limited by the onset of rotating stall and surge. These flow conditions endanger the reliability of operation and have definitely to be avoided in compressors of gas turbines. However, there is still a need to improve the physical understanding of these flow phenomena to prevent them while utilizing the maximum available working potential of the compressor. This paper discusses detailed experimental investigations of the rotating stall onset with the main emphasis on the aerodynamic blade excitation in the Dresden four-stage Low-Speed Research Compressor. The stall inception, which is triggered by modal waves, as well as the main flow features during rotating stall operation are discussed. To investigate the unsteady pressure distributions, both the rotor and the stator blades of the first stage were equipped with piezoresistive pressure transducers. Based on these measurements the unsteady blade pressure forces are calculated. Time-resolved results at the stability limit as well as during rotating stall are presented. For all operating conditions rotor-stator-interactions play an important role on the blade force excitation. Furthermore the role of the inertia driven momentum exchange at the stall cell boundaries on the aerodynamic blade force excitation is pointed out.

2006 ◽  
Vol 129 (3) ◽  
pp. 503-511 ◽  
Author(s):  
Ronald Mailach ◽  
Konrad Vogeler

The stable operating range of axial compressors is limited by the onset of rotating stall and surge. These flow conditions endanger the reliability of operation and definitely have to be avoided in compressors of gas turbines. However, there is still a need to improve the physical understanding of these flow phenomena to prevent them while utilizing the maximum available working potential of the compressor. This paper discusses detailed experimental investigations of the rotating stall onset with the main emphasis on the aerodynamic blade excitation in the Dresden four-stage low-speed research compressor. The stall inception, which is triggered by modal waves, as well as the main flow features during rotating stall operation are discussed. To investigate the unsteady pressure distributions, both the rotor and the stator blades of the first stage were equipped with piezoresistive pressure transducers. Based on these measurements the unsteady blade pressure forces are calculated. Time-resolved results at the stability limit as well as during rotating stall are presented. For all operating conditions rotor–stator interactions play an important role on the blade force excitation. Furthermore the role of the inertia driven momentum exchange at the stall cell boundaries on the aerodynamic blade force excitation is pointed out.


Author(s):  
Ali Arshad ◽  
Qiushi Li ◽  
Simin Li ◽  
Tianyu Pan

Experimental investigations of the effect of inlet blade loading on the rotating stall inception process are carried out on a single-stage low-speed axial compressor. Temporal pressure signals from the six high response pressure transducers are used for the analysis. Pressure variations at the hub are especially recorded during the stall inception process. Inlet blade loading is altered by installing metallic meshed distortion screens at the rotor upstream. Three sets of experiments are performed for the comparison of results, i.e. uniform inlet flow, tip, and hub distortions, respectively. Regardless of the type of distortion introduced to the inflow, the compressor undergoes a performance drop, which is more severe in the hub distortion case. Under the uniform inlet flow condition, stall inception is caused by the modal type disturbance while the stall precursor switched to spike type due to the highly loaded blade tip. In the presence of high blade loading at the hub, spike disappeared and the compressor once again witnessed a modal type disturbance. Hub pressure fluctuations are observed throughout the process when the stall is caused by a modal wave while no disturbance is noticed at the hub in spike type stall inception. It is believed that the hub flow separation contributes to the modal type of stall inception phenomenon. Results are also supported by the recently developed signal processing techniques for the stall inception study.


Author(s):  
Eighdi Aung ◽  
Marco P. Schoen ◽  
Jichao Li

Abstract Axial compressor systems are susceptible to unstable conditions near their optimal operating point. In particular, rotating stall and surge are conditions that need to be avoided during the operation of an axial compressor. In extreme cases these conditions may cause damage to the compressor. The onset of either condition is rather rapid, and usually does not allow for remedial control action based on the limited time available. Hence, research efforts have been focusing on the development of new detection methods that allow for more time to take corrective measures. This paper explores and compares various existing and proposed methods to identify and detect those precursors. The methods detailed in this work are tested at different operating conditions and locations. The methods investigated include the sequentially computed correlation coefficient of pressure sensor data, correlation coefficient, the Generalized Extreme Studentized Deviate Test (ESD) for outlier detection, spectral entropy, and Autoregressive (AR) models. The primary goal of evaluating these methods is based on their suitability for employment as pre-processors for dynamic system identification. By using the dynamics of the identified model rather than a static precursor, it is stipulated that the onset of stall and surge can be managed with a control concept. For this work, the extracted models are investigated for suitability to serve as precursors, and the potential as predictive models. This work may serve for future work to achieve active flow control by direct air injection at the leading edge of the blades. For this work, a one-stage compressor system with a blade geometry that allows for spike inception is utilized. Spike stall inception is a precursor to fully developed rotating stall. The subsonic compressor has 60 blades, and its operating point is controlled by a throttle and constant speed control of the rotor. The pressure data is collected with 10 Kulite™ sensors which are placed along the blade cord length on the outer casing of the compressor. The results of the tabulated performance of the various methods and resulting models indicate that an ARESD combination yields the earliest indication for spike stall inception.


1998 ◽  
Vol 120 (3) ◽  
pp. 393-401 ◽  
Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms in a low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short length-scale disturbance known as a “spike,” and the second with a longer length-scale disturbance known as a “modal oscillation.” In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented that relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: Long length-scale disturbances are related to a two-dimensional instability of the whole compression system, while short length-scale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed that explains the type of stall inception pattern observed in a particular compressor. Measurements from a single-stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.


Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms a in low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short lengthscale disturbance known as a ‘spike’, and the second with a longer lengthscale disturbance known as a ‘modal oscillation’. In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented which relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: long lengthscale disturbances are related to a two-dimensional instability of the whole compression system, while short lengthscale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed which explains the type of stall inception pattern observed in a particular compressor. Measurements from a single stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.


Author(s):  
L. G. N. Bennett ◽  
W. D. E. Allan

Rotating stall is an internal aerodynamic disturbance that limits the performance and operating life of a compressor. It has been studied with the aim of developing techniques for its prediction and prevention. To further the understanding of rotating stall inception, a test rig was constructed with the axial stages of a Rolls Royce Model 250-C20B small, high speed axial compressor as the test article. A gasoline engine was used to power the compressor and airflow was throttled through a pneumatically controlled valve. Simultaneous static pressure measurements were taken with seven high speed transducers arranged in two configurations: distributed both axially and circumferentially around the compressor casing. The compressor characteristic was mapped and detailed pressure measurements were taken between normal and surge operating conditions. Previous studies of high speed multi-stage compressors have shown both modal and spike type stall inception at different compressor stages. Other examinations of the Model 250 compressor have shown stall inception occurring at the first stage of the compressor. Similar results were observed in this study and an analysis was conducted using a variety of signal processing techniques including pressure trace inspection and discrete spatial Fourier decomposition.


Author(s):  
Vaclav Cyrus

Fourteen low-speed axial compressor stages have been tested in the SVÚSS and AHT laboratories. In four cases a detailed analysis of stall development was carried out while the stage working point moved from the design condition to the stability limit. In majority of cases the primary flow mechanism for stall was found. In most stages stalled flow arose in the upper half of the rotor blade row, thereby, tip clearance flow contributed to the growth of low-energy fluid near the casing. An alternative flow mechanism occurred only in one stage with very high aerodynamic loading. Near the stability limit, stalled flow appeared in the rotor blade row in the hub corner. The spanwise distribution of the diffusion factor helped us in the description of stalled flow in stage blade rows. It follows from these experimental results that the conditions in the rotor blade row play the main role in the rotating stall onset. The extent of stall in the inlet guide vanes and stator vanes did not have a large affect on this phenomenon. The extent of stalled flow in stator row near the stability limit changed with the turning of vanes. At higher values of the IGV turning nonsteady flow patterns can appear. The conditioning of the stage inlet flow field by means of a specially designed grid affects the stall development in the stage and the onset of rotating stall. A higher value of flow turbulence intensity (Tu = 6–7 %) caused the shift of the stage stability limit to lower flow rates. The stage stall margin was not sensitive to peripheral flow non-uniformities.


Author(s):  
S. Vagnoli ◽  
T. Verstraete

In this paper unsteady CFD computations are used to study the stability and the rotating stall inception of a transonic radial compressor, considering two different configurations influencing the inlet flow. The prediction of the surge and stall limit for a centrifugal compressor is a key parameter for operating such machines, and hence requires attention already in the early design phase. Moreover, the operating margin can be dramatically influenced by non-uniform inlet conditions due to for example bended pipes mounted close to the inlet, as found more often today due to space limitation and optimization. In this case, it is not trivial to understand how the performance of the machine will be affected. The influence on the stability limit of an elbow installed in front of the compressor inlet is analyzed in this paper by means of unsteady RANS simulations: results for two different configurations, with elbow and with straight inlet placed in front of the compressor, are compared. All simulations are done modeling the whole annulus of the radial machine, using high performance computing, in order to accurately take into account the non-periodic phenomena leading to stall inception. Moreover, mechanisms leading to flow separation for unstable solutions are studied, pointing out how they are influenced by the unsteady interactions of the tip leakage vortices with the main flow and by the distorted flow from the inlet elbow.


Author(s):  
Byeung Jun Lim ◽  
Tae Choon Park ◽  
Young Seok Kang

In this study, characteristics of stall inception in a single-stage transonic axial compressor with circumferential grooves casing treatment were investigated experimentally. Additionally, the characteristic of increasing irregularity in the pressure inside circumferential grooves as the compressor approaches the stall limit was applied to the stall warning method. Spike-type rotating stall was observed in the single-stage transonic axial compressor with smooth casing. When circumferential grooves were applied, the stall inception was suppressed and the operating point of the compressor moved to lower flow rate than the stall limit. A spike-like disturbance was developed into a rotating stall cell and then the Helmholtz perturbation was overlapped on it at N = 80%. At N = 70 %, the Helmholtz perturbation was observed first and the amplitude of the wave gradually increased as mass flow rate decreased. At N = 60%, spike type stall inceptions were observed intermittently and then developed into continuous rotating stall at lower mass flow rate. Pressure measured at the bottom of circumferential grooves showed that the level of irregularity of pressure increased as flow rate decreased. Based on the characteristic of increasing irregularity of the pressure signals inside the circumferential grooves as stall approaches, an autocorrelation technique was applied to the stall warning. This technique could be used to provide warning against stall and estimate real-time stall margins in compressors with casing treatments.


Author(s):  
Jiaguo Hu ◽  
Tianyu Pan ◽  
Wenqian Wu ◽  
Qiushi Li ◽  
Yifang Gong

The instability has been the largest barrier of the high performance axial compressor in the past decades. Stall inception, which determines the route and the characteristics of instability evolution, has been extensively focused on. A new stall inception, “partial surge”, is discovered in the recent experiments. In this paper full-annulus transient simulations are performed to study the origin of partial surge initiated inception and explain the aerodynamic mechanism. The simulations show that the stall inception firstly occurs at the stator hub region, and then transfers to the rotor tip region. The compressor finally stalled by the tip region rotating stall. The stall evolution is in accord with the experiments. The stall evolution can be divided into three phases. In the first phase, the stator corner separation gradually merged with the adjacent passages, producing an annulus stall cell at the stator hub region. In the second phase, the total pressure rise of hub region emerges rapid decline due to the fast expansion of the annulus stall cell, but the tip region maintains its pressure rise. In the third phase, a new rotating stall cell appears at the rotor tip region, leading to the onset of fast drop of the tip region pressure rise. The stall cells transfer from hub region to the tip region is caused by two factors, the blockage of the hub region which transfers more load to the tip region, and the separation fluid fluctuations in stator domain which increase the circumferential non-uniformity in the rotor domain. High load and non-uniformity at the rotor tip region induce the final rotating stall.


Sign in / Sign up

Export Citation Format

Share Document