Characterisation of Static Strip Seal Flow

Author(s):  
Arash Farahani ◽  
Peter Childs

Strip seals are used in gas turbine engines between two static elements or between components which do not move relative to each other, such as Nozzle Guide Vanes (NGVs). The key role of a strip seal between NGV segments is sealing between the flow through the main stream annulus and the internal air system, a further purpose is to limit the inter-segmental movements. In general the shape of the strip seal is a rectangular strip that fits into two slots in adjacent components. The minimum clearance required for static strip seals must be found by accounting for thermal expansion, misalignment, and application, to allow correct fitment of the strip seals. Any increase in leakage raises the cost due to an increase in the cooling air use, which is linked to specific fuel consumption, and it can also alter gas flow paths and performance. The narrow path within the seal assembly, especially the height has the most significant affect on leakage. The height range of the narrow path studied in this paper is 0.01–0.06 mm. The behaviour of the flow passing through the narrow path has been studied using CFD modelling and measurements in a bespoke rig. The CFD and experimental results show that normalized leakage flow increases with pressure ratio before reaching a maximum. The main aim of this paper is to provide new experimental data to verify the CFD modelling for static strip seals. The typical flow characteristics validated by CFD modelling and experiments can be used to predict the flow behaviour for future static strip seal designs.

Author(s):  
Ranjan Saha ◽  
Jens Fridh ◽  
Mats Annerfeldt

Given the shortage of fossil fuels and the growing greenhouse effect, one strive in modern gas turbines is to make maximum usage of the burnt fuel. By reducing the number of vanes or blades and thereby increasing the loading per vane (or blade) it is possible to spend less cooling air, which will have a positive impact on the combined cycle efficiency. It also reduces the number of components and usage of metal and thereby also the cost of the engine. These savings should be achieved without any efficiency deficit in aerodynamic efficiency. Based on the fact, aerodynamic investigations were performed to see the aerodynamic implications of reduced vane number in a transonic annular sector cascade. The number of new nozzle guide vane was reduced with 24% compared to a previous design with higher vane count. The investigated vanes were two typical high pressure gas turbine vanes. Results regarding the loading indicated an expected increase with the reduced vane case. The minimum static pressure at the suction side is lower and at an earlier location for the reduced vane case and therefore, an extension of the trailing edge deceleration zone is observed for the reduced vane case. Results regarding losses indicate that even though the losses produced per vane significantly increases for the reduced vane case, a comparison of mass averaged losses between the reduced vane case and previous vane case show similar spanwise loss distributions. Assessing results leads to a conclusion that the reduction of the number of vanes in the first stage seems to be a useful method to save cooling flow as well as material costs without any significant deficit in overall efficiency.


2017 ◽  
Vol 139 (8) ◽  
Author(s):  
K. Srinivasan ◽  
P. M. V. Subbarao ◽  
S. R. Kale

The present work investigates the extension of Navier–Stokes equations from slip-to-transition regimes with higher-order slip boundary condition. To achieve this, a slip model based on the second-order slip boundary condition was derived and a special procedure was developed to simulate slip models using FLUENT®. The boundary profile for both top and bottom walls was solved for each pressure ratio by the customized user-defined function and then passed to the FLUENT® solver. The flow characteristics in microchannels of various aspect ratios (a = H/W = 0.002, 0.01, and 0.1) by generating accurate and high-resolution experimental data along with the computational validation was studied. For that, microchannel system was fabricated in silicon wafers with controlled surface structure and each system has several identical microchannels of same dimensions in parallel and the processed wafer was bonded with a plane wafer. The increased flow rate reduced uncertainty substantially. The experiments were performed up to maximum outlet Knudsen number of 1.01 with nitrogen and the second-order slip coefficients were found to be C1 = 1.119–1.288 (TMAC = 0.944–0.874) and C2 = 0.34.


Author(s):  
Antonio Guijarro Valencia ◽  
Jeffrey A. Dixon ◽  
Riccardo Da Soghe ◽  
Bruno Facchini ◽  
Peter E. J. Smith ◽  
...  

Reliable means of predicting ingestion in cavities adjacent to the main gas path are increasingly being sought by engineers involved in the design of gas turbines. In this paper, analysis is to be presented that results from an extended research programme, MAGPI, sponsored by the EU and several leading gas turbine manufactures and universities. Extensive use is made of CFD modelling techniques to understand the aerodynamic behaviour of a turbine stator well cavity, focusing on the interaction of cooling air supply with the main annulus gas. The objective of the study has been to benchmark a number of CFD codes and numerical techniques covering RANS and URANS calculations with different turbulence models in order to assess the suitability of the standard settings used in the industry for calculating the mechanics of the flow travelling between cavities in a turbine through the main gas path. The modelling methods employed have been compared making use of experimental data gathered from a dedicated two-stage turbine rig, running at engine representative conditions. Extensive measurements are available for a range of flow conditions and alternative cooling arrangements. The limitations of the numerical methods in calculating the interaction of the cooling flow egress and the main stream gas, and subsequent ingestion into downstream cavities in the engine (i.e. re-ingestion), have been exposed. This has been done without losing sight of the validation of the CFD for its use for predicting heat transfer, which was the main objective of the partners of the MAGPI Work-Package 1 consortium.


1982 ◽  
Vol 104 (2) ◽  
pp. 275-280 ◽  
Author(s):  
H. F. Jen ◽  
J. B. Sobanik

An analytical model for the prediction of cooling air flow characteristics (mass flow rate and internal pressure distribution) in gas turbine components is discussed. The model addresses a number of basic flow elements typical to gas turbine components such as orifices, frictional passages, labyrinth seals, etc. Static bench test measurements of the flow characteristics were in good agreement with the analysis. For the turbine blade, the concept of equivalent pressure ratio is introduced and shown to be useful for predicting (i) the cooling air flow rate through the rotor blade at engine conditions from the static rig and (ii) cooling air leakage rate at the rotor serration at engine conditions. This method shows excellent agreement with a detailed analytical model at various rotor speeds. A flow calibration procedure preserving flow similarity for blades and rotor assemblies is recommended.


Author(s):  
Zhijun Lei ◽  
Ali Mahallati ◽  
Mark Cunningham ◽  
Patrick Germain

This paper presents a detailed experimental investigation of the influence of core flow swirl on the mixing and performance of a scaled turbofan mixer with 12 scalloped lobes. Measurements were made downstream of the mixer in a coaxial wind tunnel. The core-to-bypass velocity ratio was set to 2:1, temperature ratio to 1.0, and pressure ratio to 1.03, giving a Reynolds number of 5.2 × 105, based on the core flow velocity and equivalent diameter. In the core flow, the background turbulence intensity was raised to 5% and the swirl angle was varied from 0 deg to 30 deg with five vane geometries. At low swirl angles, additional streamwise vortices were generated by the deformation of normal vortices due to the scalloped lobes. With increased core swirl, greater than 10 deg, the additional streamwise vortices were generated mainly due to radial velocity deflection, rather than stretching and deformation of normal vortices. At high swirl angles, stronger streamwise vortices and rapid interaction between various vortices promoted downstream mixing. Mixing was enhanced with minimal pressure and thrust losses for the inlet swirl angles less than 10 deg. However, the reversed flow downstream of the center body was a dominant contributor to the loss of thrust at the maximum core flow swirl angle of 30 deg.


Author(s):  
T. Bacci ◽  
A. Picchi ◽  
T. Lenzi ◽  
B. Facchini ◽  
L. Innocenti

Abstract Surface roughness is well known to significantly influence turbine aerodynamics and heat transfer; different studies have been undertaken in the last decades, in order to precisely characterize its effects and pursue a reliable and unified CFD modelling approach. Despite the effort, further research is still required to completely fulfill the goal, due to the complexity of the considered environment, with many other aspects and flow characteristics factoring into the final behavior. In this work an experimental campaign was carried out to evaluate the heat transfer coefficient on a linear nozzle guide vane geometry. The adopted geometry has been developed and tested, at different inlet turbulence intensity, Reynolds and Mach number, at Von Karman Institute. The results achieved on a test article with smooth surface were made available. In the present work the effect of increased turbulence level and surface roughness were taken into account, respectively using passive grids and conditioning the test sample surface finishing. Experiments were conducted using a transient technique by measuring the surface temperature evolution by IR thermography. The collected results integrate the existing database available in the open literature in order to support development and benchmarking of numerical approaches aimed at a reliable characterization of these aspects.


Author(s):  
H. F. Jen ◽  
J. B. Sobanik

An analytical model for the prediction of cooling air flow characteristics (mass flow rate and internal pressure distribution) in gas turbine components is discussed. The model addresses a number of basic flow elements typical to gas turbine components such as orifices, frictional passages, labyrinth seals, etc. Static bench test measurements of the flow characteristics were in good agreement with the analysis. For the turbine blade, the concept of equivalent pressure ratio is introduced and shown to be useful for predicting (1) the cooling air flow rate through the rotor blade at engine conditions from the static rig and (2) cooling air leakage rate at the rotor serration at engine conditions. This method shows excellent agreement with a detailed analytical model at various rotor speeds. A flow calibration procedure preserving flow similarity for blades and rotor assemblies is recommended.


2021 ◽  
pp. 1-38
Author(s):  
Tommaso Bacci ◽  
Alessio Picchi ◽  
Tommaso Lenzi ◽  
Bruno Facchini ◽  
Luca Innocenti

Abstract Surface roughness is well known to significantly influence turbine aerodynamics and heat transfer; different studies have been undertaken in the last decades, in order to precisely characterize its effects and pursue a reliable and unified CFD modelling approach. Despite the effort, further research is still required to completely fulfill the goal, due to the complexity of the considered environment, with many other aspects and flow characteristics factoring into the final behavior. In this work an experimental campaign was carried out to evaluate the heat transfer coefficient on a linear nozzle guide vane geometry. The adopted geometry has been developed and tested, at different inlet turbulence intensity, Reynolds and Mach number, at Von Kármán Institute. The results achieved on a test article with smooth surface were made available. In the present work the effect of increased turbulence level and surface roughness were taken into account, respectively using passive grids and conditioning the test sample surface finishing. Experiments were conducted using a transient technique by measuring the surface temperature evolution by IR thermography. The collected results integrate the existing database available in the open literature in order to support development and benchmarking of numerical approaches aimed at a reliable characterization of these aspects.


Sign in / Sign up

Export Citation Format

Share Document