Influence of Stagger Angle Variation on Aerodynamic Damping and Frequency Shifts

Author(s):  
I. Sladojevic´ ◽  
A. I. Sayma ◽  
M. Imregun

The paper presents the results of a study focusing on aerodynamic non-uniformities and their effect on frequency and damping variations. Small tolerances of stagger angle or camber can affect the aerodynamic loading of rotor blades, without significantly altering the structural properties. This investigation looks into the degree of change of natural frequencies and damping of the aeroelastic model caused by blade stagger angle variations. The model used in the study is a simplified aero-engine fan model. The investigation involved three different patterns at two operating speeds. The results suggest that damping in a mis-staggered structure is more prone to variation than frequencies.

2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Jens Aschenbruck ◽  
Joerg R. Seume

Geometrical variations occur in highly loaded turbine blades due to operation and regeneration. To determine the influence of such regeneration-induced variances of turbine blades on the aerodynamic excitation, a typical stagger angle variation of overhauled turbine blades is applied to stator vanes of an air turbine. This varied turbine stage is numerically and experimentally investigated. For the aerodynamic investigation of the vane wake, computational fluid dynamics (CFD) simulations are conducted. It is shown that the wake is changed due to the stagger angle variation. These results are confirmed by aerodynamic probe measurements in the air turbine. The vibration amplitude of the downstream rotor blades has been determined by a computational forced response analysis using a unidirectional fluid–structure interaction (FSI) approach and is experimentally verified here by tip-timing measurements. The results of the simulations and the measurements both show significantly higher amplitudes at certain operating points (OPs) due to the additional wake excitation. For typical regeneration-induced variations in stagger angle, the vibration amplitude is up to five times higher than in the reference case of uniform upstream stators. Based upon the present results, the influence of these variations and of the vane patterns on the vibration amplitude of the downstream rotor blade can and should be estimated in the regeneration process to minimize the dynamic stresses of the blades.


Author(s):  
Jens Aschenbruck ◽  
Joerg R. Seume

Geometrical variations occur in highly loaded turbine blades due to operation and regeneration. To determine the influence of such regeneration-induced variances of turbine blades on the aerodynamic excitation, a typical stagger angle variation of overhauled turbine blades is applied to stator vanes of an air turbine. This varied turbine stage is numerically and experimentally investigated. For the aerodynamic investigation of the vane wake, CFD simulations are conducted. It is shown that the wake is changed due to the stagger angle variation. These results are confirmed by aerodynamic probe measurements in the air turbine. The vibration amplitude of the downstream rotor blades has been determined by a computational forced response analysis using a uni-directional fluid-structure interaction approach and is experimentally verified here by tip-timing measurements. The results of the simulations and the measurements both show significantly higher amplitudes at certain operating points due to the additional wake excitation. For typical regeneration-induced variations in stagger angle, the vibration amplitude is up to five times higher than in the reference case of uniform upstream stators. Based upon the present results, the influence of these variations and of the vane patterns on the vibration amplitude of the downstream rotor blade can and should be estimated in the regeneration process to minimize the dynamic stresses of the blades.


1986 ◽  
Vol 80 (3) ◽  
pp. 997-997
Author(s):  
Brian Barry ◽  
Christopher Freeman

2016 ◽  
Vol 846 ◽  
pp. 535-540
Author(s):  
David J. Munk ◽  
David W. Boyd ◽  
Gareth A. Vio

Designing structures with frequency constraints is an important task in aerospace engineering. Aerodynamic loading, gust loading, and engine vibrations all impart dynamic loads upon an airframe. To avoid structural resonance and excessive vibration, the natural frequencies of the structure must be shifted away from the frequency range of any dynamic loads. Care must also be taken to ensure that the modal frequencies of a structure do not coalesce, which can lead to dramatic structural failure. So far in industry, no aircraft lifting surfaces are designed from the ground up with frequency optimisation as the primary goal. This paper will explore computational methods for achieving this task.This paper will present a topology optimisation algorithm employing the Solid Isotropic Microstructure with Penalisation (SIMP) method for the design of an optimal aircraft wing structure for rejection of frequency excitation.


Author(s):  
Felix Figaschewsky ◽  
Arnold Kühhorn

With increasing demands for reliability of modern turbomachinery blades the quantification of uncertainty and its impact on the designed product has become an important part of the development process. This paper aims to contribute to an improved approximation of expected vibration amplitudes of a mistuned rotor assembly under certain assumptions on the probability distribution of the blade’s natural frequencies. A previously widely used lumped mass model is employed to represent the vibrational behavior of a cyclic symmetric structure. Aerodynamic coupling of the blades is considered based on the concept of influence coefficients leading to individual damping of the traveling wave modes. The natural frequencies of individual rotor blades are assumed to be normal distributed and the required variance could be estimated due to experiences with the applied manufacturing process. Under these conditions it is possible to derive the probability distribution of the off-diagonal terms in the mistuned equations of motions, that are responsible for the coupling of different circumferential modes. Knowing these distributions recent limits on the maximum attainable mistuned vibration amplitude are improved. The improvement is achieved due to the fact, that the maximum amplification depends on the mistuning strength. This improved limit can be used in the development process, as it could partly replace probabilistic studies with surrogate models of reduced order. The obtained results are verified with numerical simulations of the underlying structural model with random mistuning patterns based on a normal distribution of individual blade frequencies.


1955 ◽  
Vol 22 (3) ◽  
pp. 355-360
Author(s):  
M. Morduchow ◽  
S. W. Yuan ◽  
H. Reissner

Abstract Based on a simplified model of the hub-fuselage structure, a theoretical analysis is made of the response of the hub and fuselage of a helicopter in flight to harmonic forces transmitted by the rotor blades to the hub both in, and normal to, the plane of rotation. The assumed structure is in the form of a plane framework with masses concentrated at the joints. Simple expressions are derived for the vibration amplitudes of the mass points as functions of the masses and natural frequencies of the hub and the fuselage. The pertinent nondimensional parameters are determined, and simple explicit conditions of resonance are derived. Numerical examples are given to illustrate the results.


Author(s):  
Matthias Schuff ◽  
Jannik Reisberg

A flexible UHBR fan is investigated at different flight conditions with a focus on static deflections and aeroelastic stability. Operating points at varying inlet conditions, which are comparable according to the Mach similarity principle, are investigated. However, not all the aerodynamic characteristics remain identical and aerodynamic damping of mode shape vibrations is changed. When steady deformations of the fan blades are taken into account, the deviation between different inlet conditions increases further. This is mainly due to torsional deflections, changing the effective angle of attack and causing a general shift of the compressor map. Even though the subsequent changes in flutter predictions are not severe for most parts of the compressor map, the behavior at the boundaries is sensitive to the real flight condition. As shown, the Mach similarity principle is not suitable for investigating aeroelastic stability throughout the whole flight envelope, especially when the static blade deformation is not neglectable. The reason for this can be found in the complex interaction between dimension-less numbers (Mach, Reynolds), sized values (pressure difference or aerodynamic loading, natural frequency) and their dependency on each other.


Author(s):  
Hithesh Channegowda ◽  
Raghu V. Prakash ◽  
Anandavel Kaliyaperumal

Fan blades of an aero-engine assembly are the critical components that are subjected to Foreign Object Damage (FOD) such as bird impact. Bird impact resulting in deformation damage onto set of blades, which in turn alters the blade mass and stiffness distribution compared to undamaged blades. This paper presents the numerical evaluation of dynamic characteristics of bird impact damaged blades. The dynamic characteristics evaluated are the natural frequencies and mode shapes of post impact damaged set of blades and the results are compared with undamaged set of blades. The frequencies and mode shapes are evaluated for the damaged blades, with varying angles of bird impact and three blade rotational speeds. Study reveals that first bending and torsional frequencies of deformed blades are significantly affected compared to undamaged set of blades. Study emphasize the need to evaluate the natural frequencies deformed blades, that has direct bearing on High Cycle Fatigue (HCF) life of the blade, to ensure post damaged blades operate safely for certain time to reduce inflight accidents and safe landing.


2020 ◽  
pp. 107754632094545
Author(s):  
Shike Zhang ◽  
Huajiang Ouyang

For engineering structures, there is a strong need to assign natural frequencies to achieve desired dynamic performance. This study proposes a receptance-based frequency assignment method for assembled structures. Very often, the substructures involved are not allowed or are difficult to change. This method uses the links between the substructures as targets of structural modifications and determines the structural properties of the links that assign the desired frequencies cast as an optimisation problem. These links could be either simple discrete structural components such as masses and springs or complex continuous structures. Only a few receptances of the substructures are required in this method, which can be measured accurately and easily in practice. Two numerical examples are presented to show the validity of this method and its strength in dealing with complex assembled structures.


Author(s):  
I. Sladojevic´ ◽  
E. P. Petrov ◽  
M. Imregun ◽  
A. I. Sayma

The paper presents the results of a study looking into changes in the forced response levels of bladed disc assemblies subject to both structural and aerodynamic mistuning. A whole annulus FE model, representative of a civil aero-engine fan with 26 blades was used in the calculations. The forced response of all blades of 1000 random mistuned patterns was calculated. The aerodynamic parameters, frequency shifts and damping, were calculated using a three-dimensional Reynolds-averaged Navier-Stokes aero-elasticity code. They were randomly varied for each mistuning pattern, with the assumption that the system would remain stable, i.e. flutter would not occur due to aerodynamic mistuning. The results show the variation of the forced response with different types of mistuning, with structural mistuning only, with aerodynamic mistuning only and with both structural and aerodynamic mistuning.


Sign in / Sign up

Export Citation Format

Share Document