Turbo Gas Power Plants Performance Evaluation for Putting Into Commercial Operation

Author(s):  
Erik Rosado Tamariz ◽  
Norberto Pe´rez Rodri´guez ◽  
Rafael Garci´a Illescas

In order to evaluate the performance of new turbo gas power plants for putting in commercial operation, it was necessary to supervise, test and, if so the case, to approve the works of commissioning, operational and acceptance of all equipments and systems that constitute the power plant. All this was done with the aim of guaranteeing the satisfactory operation of these elements to accomplish the function for which they were developed. These activities were conducted at the request of the customer to confirm and observe that the evidence of the tests was carried out according to the specifications and international regulations. The putting into commercial operation activities were done in collaboration with the supplier and manufacturer of equipment, the client and the institution responsible for certification and approval of the plant. All this in a logical and chronological order for the sequence of commissioning tests, operation and acceptance. Commissioning tests were carried out on-site at normal operating conditions, according to the design and operation needs of each power plant of a group of 14. Once the commissioning tests were completely executed and in a satisfactory manner, operational tests of the plants were developed. This was done by considering that they must operate reliable, stable, safe and automatically, satisfying at least, one hundred hours of continuous operation at full load. After evaluating the operational capacity of the machine, it was necessary to determinate the quality of the plant by carrying out a performance test. Finally, it was verified if every unit fulfills the technical requirements established in terms of heat capacity of the machine, noise levels and emissions. As a result of this process, it is guaranteed to the customer that the turbo gas power plants, their systems and equipments, satisfy the requirements, specifications and conditions in agreement with the supplier and manufacturers referring to the putting into commercial operation of the plant.

Author(s):  
Norberto Pe´rez Rodri´guez ◽  
Erik Rosado Tamariz ◽  
Rafael Garci´a Illescas

This article presents the supervision and testifying process during the start of commercial operations of several turbogas plants generating electricity rate of 32 MW each fuelled by natural gas. Supervision and testifying process were conducted at the request of the customer to confirm and observe that the evidence of commissioning, testing and operation of acceptance tests were carried out as specified by international regulations, calling the outcome of each tests agree the applied rules. The work was done in collaboration with the supplier and manufacturer of equipment, the client and the institution responsible for certification and approval of the plant. All this according to a logical and chronological order for the sequence of tests commissioning, operation and acceptance. Tests for putting into service are carried out on-site at normal operating conditions, according to the design and operation needs of the plant. Once implemented in full and in a satisfactory manner, test operation of each plant was carried out considering that they must operate automatically, reliable, stable and secure, fulfilling at least, one hundred hours of operation at full load. After completed operation tests are conducted, acceptance testing on the power plant and integrated approach to assessing the quality of the product were accomplished. Finally, it was verified if each unit meets the technical requirements established in terms of thermal capacity of the machine, noise levels and emissions. As a result of this supervision and testifying process, it is guaranteed to the client that the power plants and all their equipment, comply with the requirements, conditions and specifications in agreement with the supplier, concerning test of putting into service, operational and acceptance tests.


Author(s):  
Shane E. Powers ◽  
William C. Wood

With the renewed interest in the construction of coal-fired power plants in the United States, there has also been an increased interest in the methodology used to calculate/determine the overall performance of a coal fired power plant. This methodology is detailed in the ASME PTC 46 (1996) Code, which provides an excellent framework for determining the power output and heat rate of coal fired power plants. Unfortunately, the power industry has been slow to adopt this methodology, in part because of the lack of some details in the Code regarding the planning needed to design a performance test program for the determination of coal fired power plant performance. This paper will expand on the ASME PTC 46 (1996) Code by discussing key concepts that need to be addressed when planning an overall plant performance test of a coal fired power plant. The most difficult aspect of calculating coal fired power plant performance is integrating the calculation of boiler performance with the calculation of turbine cycle performance and other balance of plant aspects. If proper planning of the performance test is not performed, the integration of boiler and turbine data will result in a test result that does not accurately reflect the true performance of the overall plant. This planning must start very early in the development of the test program, and be implemented in all stages of the test program design. This paper will address the necessary planning of the test program, including: • Determination of Actual Plant Performance. • Selection of a Test Goal. • Development of the Basic Correction Algorithm. • Designing a Plant Model. • Development of Correction Curves. • Operation of the Power Plant during the Test. All nomenclature in this paper utilizes the ASME PTC 46 definitions for the calculation and correction of plant performance.


Author(s):  
G. Hariharan ◽  
B. Kosanovic

The ability of modern power plant data acquisition systems to provide a continuous real-time data feed can be exploited to carry out interesting research studies. In the first part of this study, real-time data from a power plant is used to carry out a comprehensive heat balance calculation. The calculation involves application of the first law of thermodynamics to each powerhouse component. Stoichiometric combustion principles are applied to calculate emissions from fossil fuel consuming components. Exergy analysis is carried out for all components by the combined application of the first and second laws of thermodynamics. In the second part of this study, techniques from the field of System Identification and Linear Programming are brought together in finding thermoeconomically optimum plant operating conditions one step ahead in time. This is done by first using autoregressive models to make short-term predictions of plant inputs and outputs. Then, parameter estimation using recursive least squares is used to determine the relations between the predicted inputs and outputs. The estimated parameters are used in setting up a linear programming problem which is solved using the simplex method. The end result is knowledge of thermoeconomically optimum plant inputs and outputs one step ahead in time.


1999 ◽  
Author(s):  
Alejandro Zaleta-Aguilar ◽  
Armando Gallegos-Muñoz ◽  
Antonio Valero ◽  
Javier Royo

Abstract This work builds on the previous work on “Exergoeconomics Fuel-Impact” developed by Torres (1991), Valero et. al. (1994), and compares it with respect to the Performance Test Code (PTC’s) actually applied in power plants (ASME/ANSI PTC-6, 1970). With the objective of proposing procedures for PTC’s in power plant’s based on an exergoeconomics point of view. It was necessary to validate the Fuel-Impact Theories, and improve the conceptual expression, in order to make it more applicable to the real conditions in the plant. By mean of a program using simulation and field data, it was possible to validate and compare the procedures. This work has analyzed an example of a 110 MW Power Plant, in which all the exergetic costs have been determined for the steam cycle, and a fuel-impact analysis has been developed for the steam turbines at the design and off-design conditions. The result of the fuel-impact analysis is compared with respect to a classical procedure related in ASME-PTC-6.


Author(s):  
Suchismita Satapathy

All companies are dependent on their raw material providers. The same applies in the case of thermal power plants. The major raw material for a thermal power plant is the coal. There are a lot of companies which in turn provide this coal to the thermal power plant. Some of these companies are international; some are local, whereas the others are localized. The thermal power plants look into all the aspects of the coal providing company, before settling down for a deal. Some people are specifically assigned to the task of managing the supply chain. The main motive is to optimize the whole process and achieve higher efficiency. There are a lot of things which a thermal power plant looks into before finalizing a deal, such as the price, quality of goods, etc. Thus, it is very important for the raw material providers to understand each and every aspect of the demands of the thermal power plant. A combination of three methods—Delphi, SWARA, and modified SWARA—has been applied to a list of factors, which has later been ranked according to the weight and other relevant calculations.


Author(s):  
Cesar Celis ◽  
Sergio Peralta ◽  
Walter Galarza

Abstract The influence of different power augmentation techniques used in gas turbines on the performance of simple cycle type power plants is assessed in this work. A computational model and tool realistically describing the performance of a typical simple cycle type power plant at design and off-design point conditions is initially developed. This tool is complemented with different models of power augmentation technologies. Finally, the whole model including both power plant and power augmentation techniques is used to analyze a case study involving a particular power plant in Peru. The results from the simulations of the specific power plant indicate that power output can be increased through all the evaluated power augmentation technologies. These results show indeed that technologies based on absorption refrigeration systems produce the largest gains in terms of power output (7.1%) and thermal efficiency (0.7%). Such results confirm the suitability of these systems for simple cycle type power plant configurations operating under hot and humid operating conditions as those accounted for here. From an economic perspective, considering the net present value as the key parameter defining the feasibility of a project in this category, power augmentation techniques based on absorption cooling systems result also the most suitable ones for the studied power plant. Power augmentation techniques environmental implications are also quantified in terms of CO2 emissions.


2020 ◽  
Vol 6 (1) ◽  
pp. 6-9 ◽  
Author(s):  
Juraj Packa ◽  
Vladimir Kujan ◽  
Daniel Štrkula ◽  
Vladimír Šály ◽  
Milan Perný

<span style="font-family: 'Times New Roman',serif; font-size: 10pt; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;" lang="EN-US">An important part of the photovoltaic power plants are cable systems. The dielectric properties of cables, reliability and durability depend on quality of production processes, operating conditions and degradation factors, as well. Expected lifetime of cable systems is more than 20-30 years in general. Their failure free operation and long-term stability of properties has a direct impact on the economic return of the investments. According to our experiences the tests in compliance with valid standards are not adequate to verify real life time during operation. Photovoltaic cables intended for use in outdoor applications for the connection between the solar panels and possible connection between panels and inverter were chosen for our experiments. <span style="-ms-layout-grid-mode: line;">The changes </span>of insulation resistance and breakdown voltage caused by some degradation factors, mainly water, are presented. This research was inspired by real failure in operation.</span>


2014 ◽  
Vol 536-537 ◽  
pp. 1578-1582 ◽  
Author(s):  
Po Li ◽  
Cheng Wei Zhang

The power plant boiler is one of the most important facilities in thermal power plants. The thermal efficiency of power plant boilers is the index. This paper discusses the relationship between the boiler thermal efficiency and the coefficient of excess air via two methods, one is called the simplified calculating formula and the other is the calculating formula according to the The People's Republic of China national standard power plant boiler performance test procedures. According to the proposed methods, by solving the same optimal problem, optimum excess air coefficients are obtained. Then a comparative analysis is given. Moreover, an improved way for saving calculation time to get the coefficients of the mixed coal in the so called simplified calculating formula is developed.


Author(s):  
P. S. Neporozhnii ◽  
A. K. Kirsh

This paper describes the operating conditions which form the basis for determining the various types of feed pump units needed to equip the main power plant equipment in the U.S.S.R. The principles upon which the feed pump groups are selected, according to the type of equipment installed in different power plants, are considered. The system diagrams and design features of the feed pumps are presented, together with descriptions of how they are driven.


Author(s):  
R. Chacartegui ◽  
D. Sa´nchez ◽  
J. A. Becerra ◽  
A. Mun˜oz ◽  
T. Sa´nchez

In this work, a tool to predict the performance of fossil fuel steam power plants under variable operating conditions or under maintenance operations has been developed. This tool is based on the Spencer-Cotton-Cannon method for large steam turbine generator units. The tool has been validated by comparing the predicted results at different loads with real operating data of a 565 MW steam power plant, located in Southern Spain. The results obtained from the model show a good agreement with most of the power plant parameters. The simulation tool has been then used to predict the performance of a steam power plant in different operating conditions such as variable terminal temperature difference or drain cooler approach of the feed-water heaters, or under maintenance conditions like a feed-water heater out of service.


Sign in / Sign up

Export Citation Format

Share Document