Improvement of the Exergoeconomic “Fuel-Impact” Analysis for Acceptance Tests in Power Plants

1999 ◽  
Author(s):  
Alejandro Zaleta-Aguilar ◽  
Armando Gallegos-Muñoz ◽  
Antonio Valero ◽  
Javier Royo

Abstract This work builds on the previous work on “Exergoeconomics Fuel-Impact” developed by Torres (1991), Valero et. al. (1994), and compares it with respect to the Performance Test Code (PTC’s) actually applied in power plants (ASME/ANSI PTC-6, 1970). With the objective of proposing procedures for PTC’s in power plant’s based on an exergoeconomics point of view. It was necessary to validate the Fuel-Impact Theories, and improve the conceptual expression, in order to make it more applicable to the real conditions in the plant. By mean of a program using simulation and field data, it was possible to validate and compare the procedures. This work has analyzed an example of a 110 MW Power Plant, in which all the exergetic costs have been determined for the steam cycle, and a fuel-impact analysis has been developed for the steam turbines at the design and off-design conditions. The result of the fuel-impact analysis is compared with respect to a classical procedure related in ASME-PTC-6.

Author(s):  
Shane E. Powers ◽  
William C. Wood

With the renewed interest in the construction of coal-fired power plants in the United States, there has also been an increased interest in the methodology used to calculate/determine the overall performance of a coal fired power plant. This methodology is detailed in the ASME PTC 46 (1996) Code, which provides an excellent framework for determining the power output and heat rate of coal fired power plants. Unfortunately, the power industry has been slow to adopt this methodology, in part because of the lack of some details in the Code regarding the planning needed to design a performance test program for the determination of coal fired power plant performance. This paper will expand on the ASME PTC 46 (1996) Code by discussing key concepts that need to be addressed when planning an overall plant performance test of a coal fired power plant. The most difficult aspect of calculating coal fired power plant performance is integrating the calculation of boiler performance with the calculation of turbine cycle performance and other balance of plant aspects. If proper planning of the performance test is not performed, the integration of boiler and turbine data will result in a test result that does not accurately reflect the true performance of the overall plant. This planning must start very early in the development of the test program, and be implemented in all stages of the test program design. This paper will address the necessary planning of the test program, including: • Determination of Actual Plant Performance. • Selection of a Test Goal. • Development of the Basic Correction Algorithm. • Designing a Plant Model. • Development of Correction Curves. • Operation of the Power Plant during the Test. All nomenclature in this paper utilizes the ASME PTC 46 definitions for the calculation and correction of plant performance.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Zhigang Lan

Focused on the utilization of nuclear energy in offshore oil fields, the correspondence between various hazards caused by blowout accidents (including associated, secondary, and derivative hazards) and the initiating events that may lead to accidents of offshore floating nuclear power plant (OFNPP) is established. The risk source, risk characteristics, risk evolution, and risk action mode of blowout accidents in offshore oil fields are summarized and analyzed. The impacts of blowout accident in offshore oil field on OFNPP are comprehensively analyzed, including injection combustion and spilled oil combustion induced by well blowout, drifting and explosion of deflagration vapor clouds formed by well blowouts, seawater pollution caused by blowout oil spills, the toxic gas cloud caused by well blowout, and the impact of mobile fire source formed by a burning oil spill on OFNPP at sea. The preliminary analysis methods and corresponding procedures are established for the impact of blowout accidents on offshore floating nuclear power plants in offshore oil fields, and a calculation example is given in order to further illustrate the methods.


Author(s):  
Erik Rosado Tamariz ◽  
Norberto Pe´rez Rodri´guez ◽  
Rafael Garci´a Illescas

In order to evaluate the performance of new turbo gas power plants for putting in commercial operation, it was necessary to supervise, test and, if so the case, to approve the works of commissioning, operational and acceptance of all equipments and systems that constitute the power plant. All this was done with the aim of guaranteeing the satisfactory operation of these elements to accomplish the function for which they were developed. These activities were conducted at the request of the customer to confirm and observe that the evidence of the tests was carried out according to the specifications and international regulations. The putting into commercial operation activities were done in collaboration with the supplier and manufacturer of equipment, the client and the institution responsible for certification and approval of the plant. All this in a logical and chronological order for the sequence of commissioning tests, operation and acceptance. Commissioning tests were carried out on-site at normal operating conditions, according to the design and operation needs of each power plant of a group of 14. Once the commissioning tests were completely executed and in a satisfactory manner, operational tests of the plants were developed. This was done by considering that they must operate reliable, stable, safe and automatically, satisfying at least, one hundred hours of continuous operation at full load. After evaluating the operational capacity of the machine, it was necessary to determinate the quality of the plant by carrying out a performance test. Finally, it was verified if every unit fulfills the technical requirements established in terms of heat capacity of the machine, noise levels and emissions. As a result of this process, it is guaranteed to the customer that the turbo gas power plants, their systems and equipments, satisfy the requirements, specifications and conditions in agreement with the supplier and manufacturers referring to the putting into commercial operation of the plant.


2014 ◽  
Vol 536-537 ◽  
pp. 1578-1582 ◽  
Author(s):  
Po Li ◽  
Cheng Wei Zhang

The power plant boiler is one of the most important facilities in thermal power plants. The thermal efficiency of power plant boilers is the index. This paper discusses the relationship between the boiler thermal efficiency and the coefficient of excess air via two methods, one is called the simplified calculating formula and the other is the calculating formula according to the The People's Republic of China national standard power plant boiler performance test procedures. According to the proposed methods, by solving the same optimal problem, optimum excess air coefficients are obtained. Then a comparative analysis is given. Moreover, an improved way for saving calculation time to get the coefficients of the mixed coal in the so called simplified calculating formula is developed.


Author(s):  
Rainer Quinkertz ◽  
Thomas Thiemann ◽  
Kai Gierse

High efficiency and flexible operation continue to be the major requirements for power generation because of the benefits of reduced emissions and reduced fuel consumption, i.e. reduced operating costs. Ultra super critical (USC) steam parameters are the basis for state of the art technology of coal fired power plants with highest efficiency. An important part of the development process for advanced steam turbines is product validation. This step involves more than just providing evidence of customer guaranteed values (e.g. heat rate or electric output). It also involves proving that the design targets have been achieved and that the operational experience is fed back to designers to further develop the design criteria and enable the next step in the development of highly sophisticated products. What makes product validation for large size power plant steam turbines especially challenging is the fact that, due to the high costs of the required infrastructure, steam turbine manufacturers usually do not have a full scope / full scale testing facility. Therefore, good customer relations are the key to successful validation. This paper describes an extensive validation program for a modern state of the art ultra supercritical steam turbine performed at an operating 1000 MW steam power plant in China. Several measuring points in addition to the standard operating measurements were installed at one of the high pressure turbines to record the temperature distribution, e.g. to verify the functionality of the internal cooling system, which is an advanced design feature of the installed modern high pressure steam turbines. Predicted 3D temperature distributions are compared to the actual measurements in order to verify and evaluate the design rules and the design philosophy applied. Conclusions are drawn regarding the performance of modern 3D design tools applied in the current design process and an outlook is given on the future potential of modern USC turbines.


Author(s):  
Y. Kostenko ◽  
D. Veltmann ◽  
S. Hecker

Abstract Growing renewable energy generation share causes more irregular and more flexible operational regimes of conventional power plants than in the past. It leads to long periods without dispatch for several days or even weeks. As a consequence, the required pre-heating of the steam turbine leads to an extended power plant start-up time [1]. The current steam turbine Hot Standby Mode (HSM) contributes to a more flexible steam turbine operation and is a part of the Flex-Power Services™ portfolio [2]. HSM prevents the turbine components from cooling via heat supply using an electrical Trace Heating System (THS) after shutdowns [3]. The aim of the HSM is to enable faster start-up time after moderate standstills. HSM functionality can be extended to include the pre-heating option after longer standstills. This paper investigates pre-heating of the steam turbine with an electrical THS. At the beginning, it covers general aspects of flexible fossil power plant operation and point out the advantages of HSM. Afterwards the technology of the trace heating system and its application on steam turbines will be explained. In the next step the transient pre-heating process is analyzed and optimized using FEA, CFD and analytic calculations including validation considerations. Therefor a heat transfer correlation for flexible transient operation of the HSM was developed. A typical large steam turbine with an output of up to 300MW was investigated. Finally the results are summarized and an outlook is given. The results of heat transfer and conduction between and within turbine components are used to enable fast start-ups after long standstills or even outages with the benefit of minimal energy consumption. The solution is available for new apparatus as well as for the modernization of existing installations.


Author(s):  
Almar Gunnarsson ◽  
Ari Elisson ◽  
Magnus Jonsson ◽  
Runar Unnthorsson

In a geothermal power plant the working fluid used to produce electricity is often wet steam composed of corrosives chemicals. In this situation, more frequent maintenance of the equipment is required. By constructing an overview for maintenance in geothermal power plants and how it can be done with minimum power outages and cost, the geothermal energy can be made more competitive in comparison to other energy resources. This work is constructed as a part of a project, which has the aim of mapping the maintenance management system at the Hellisheiði geothermal power plant in Iceland. The object of the project is to establish Reliability Centered Maintenance (RCM) program for Hellisheiði power plant that can be utilized to establish efficient maintenance management procedures. The focus of this paper is to examine the steam turbines, which have been defined as one of the main subsystems of the power plant at Hellisheiði. A close look will be taken at the maintenance needed for the steam turbines by studying for example which parts break down and how frequently they fail. The local ability of the staff to repair or construct turbine parts on-site is explored. The paper explores how the maintenance and condition monitoring is carried out today and what can be improved in order to reduce cost. The data collected is analyzed using Failure Mode and Effect Analysis (FMEA) in order to get an overview of the system and to help organizing maintenance and condition monitoring of the power plant in the future. Furthermore, the paper presents an overview of currently employed maintenance methods at Hellisheiði power plant, the domestic ability for maintaining and repairing steam turbines and the power plant’s need for repairs. The results show that the need for maintenance of the geothermal steam turbines at Hellisheiði power plant is high and that on-site maintenance and repairs can decrease the cost.


Author(s):  
Xinzhong Xu ◽  
Kepeng Xu ◽  
Baoqing Li ◽  
Qing Chen ◽  
Hongde Jiang

In this part of present paper the key technologies for steam turbine blade and non-blade components developed by using the precise, full-dimensional (PFD) system is described firstly. For blade components advanced aerodynamic concept and design method for customized after-loaded profile, compound-lean blade, tandem cascade, contoured endwall, and solid particle erosion protection for HP and IP first nozzle have been developed. For non-blade component including main steam inlet/control valve, LP exhaust hood, packing seal and cavity flow, casing opening and condenser, new aerodynamic and mechanical design has been developed. New blade and non-blade components were experimentally and numerically investigated to verify its performance. Finite element method (FEM) analysis for all key components is also illustrated in this paper. Secondly the approach of validation and updating for the PFD system is introduced. Based on a large amount of on-site performance test data in power plants the statistic accuracy for the PFD system is given. It shows that in comparison with conventional F3D design methodology another 1.5-2 percent of HP and IP overall section efficiency improvement has been achieved.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3798
Author(s):  
Hamid Iftikhar ◽  
Eduardo Sarquis ◽  
P. J. Costa Branco

Existing megawatt-scale photovoltaic (PV) power plant producers must understand that simple and low-cost Operation and Maintenance (O&M) practices, even executed by their own personal and supported by a comparison of field data with simulated ones, play a key role in improving the energy outputs of the plant. Based on a currently operating 18 MW PV plant located in an under-developing South-Asia country, we show in this paper that comparing real field data collected with simulated results allows a central vision concerning plant underperformance and valuable indications about the most important predictive maintenances actions for the plant in analysis. Simulations using the globally recognized software PVSyst were first performed to attest to the overall power plant performance. Then, its energy output was predicted using existing ground weather data located at the power plant. Compared with the actual plant’s annual energy output, it was found that it was underperforming by −4.13%, leading to a potential monetary loss of almost 175,000 (EUR)/year. Besides, an analysis of the O&M power plant reports was performed and compared to the best global practices. It was assessed that the tracker systems’ major issues are the forerunner of the most significant PV power plant underperformance. In addition, issues in inverters and combiner boxes were also reported, leading to internal shutdowns. In this case, predictive maintenance and automated plant diagnosis with a bottom-up approach using low-cost data acquisition and processing systems, starting from the strings level, were recommended.


2016 ◽  
Vol 1 (2) ◽  
pp. 156 ◽  
Author(s):  
Riezqa Andika ◽  
Valentina Valentina

As the most abundant and widely distributed fossil fuel, coal has become a key component of energy sources in worldwide. However, air pollutants from coal power plants contribute carbon dioxide emissions. Therefore, understanding how to taking care coal in industrial point of view is important. This paper focused on the feasibility study, including process design and simulation, of a coal to SNG power plant in Kalimantan in order to fulfill its electricity demand. In 2019, it is estimated that Kalimantan will need 2446 MW of electricity and it reaches 2518 MW in 2024. This study allows a thorough evaluation both in technology and commercial point of view. The data for the model is gathered through literature survey from government institution reports and academic papers. Aspen HYSYS is used for modelling the power plant consists of two blocks which are SNG production block and power block. The economic evaluation is vary depends on the pay-back period, capital and operational cost which are coal price, and electricity cost. The results of this study can be used as support tool for energy development plan as well as policy-making in Indonesia.


Sign in / Sign up

Export Citation Format

Share Document