scholarly journals Thermodynamic and Economic Evaluation of an IGCC Plant Based on the Graz Cycle for CO2 Capture

Author(s):  
W. Sanz ◽  
M. Mayr ◽  
H. Jericha

The IEA World Energy Outlook 2009 predicts a considerable growth of the world’s primary energy demand and states that fossil fuels will remain the dominant source of primary energy. Among them coal will increase its share because of its vast reserves, its relatively even global distribution and its low prices compared to oil and gas. On the other hand the burning of coal emits larger quantities of CO2 than oil and gas. As CO2 is the leading cause for global warming, the use of coal for power generation demands a clean coal technology with carbon capture and storage (CCS). Therefore in this work it is suggested to combine a coal gasification unit with a Graz Cycle power plant, an oxy-fuel technology of highest efficiency. The firing of the syngas from coal gasification with pure oxygen avoids the expensive pre-combustion CO2 sequestration and leads to a working fluid of CO2 and steam, where CO2 is captured by simple steam condensation. In contrast to this, the more conventional technology is to send the syngas to a water-shift reactor and a CO2 scrubber so that a fuel containing mainly hydrogen is obtained which can be fired in a conventional combined cycle plant. In order to evaluate these two competing technologies a thermodynamic simulation as well as an economic cost analysis of both power cycles is performed. It turns out that the achievable efficiency of the Graz Cycle plant is — despite of the increased oxygen demand — far higher than that of a plant of conventional capture technology due to the avoidance of shift reaction and scrubbing. The following economic analysis shows mitigation costs of 22.5 €/ton CO2 avoided for the Graz Cycle plant compared to 33 €/ton for an IGCC plant with CO2 capture.

Author(s):  
W. Sanz ◽  
H. Jericha ◽  
B. Bauer ◽  
E. Go¨ttlich

Since the Kyoto conference there is a broad consensus that the human emission of greenhouse gases, mainly CO2, has to be reduced. In the power generation sector there are three main alternatives which are currently studied world wide. Among them oxy-fuel cycles with internal combustion with pure oxygen are a very promising technology. Within the European project ENCAP — ENhanced CO2 CAPture — the benchmarking of a number of novel power cycles with CO2 capture was carried out [1]. Within the category oxy-fuel cycles the Graz Cycle and the Semi-Closed Oxy-Fuel Combustion Combined Cycle (SCOC-CC) both achieved a net efficiency of nearly 50%. In a second step a qualitative comparison of the critical components was performed according to their technical maturity. In contrast to the Graz Cycle the study authors claimed that no major technical barriers would exist for the SCOC-CC. In this work the ENCAP study is repeated for the SCOC-CC and for a modified Graz Cycle variant as presented at the ASME IGTI conference 2006 [2]. Both oxy-fuel cycles are thermodynamically investigated based on common assumptions agreed with industry in previous work. The calculations showed that the high-temperature turbine of the SCOC-CC plant needs a much higher cooling flow supply due to the less favorable properties of the working fluid. A layout of the main components of both cycles is further presented which shows that both cycles rely on the new designs of the high-temperature turbine and the compressors. The SCOC-CC compressor needs more stages due to a lower rotational speed but has a more favorable operating temperature. In general, all turbomachines of both cycles show similar technical challenges and are regarded as feasible.


Author(s):  
Jay F. Kunze ◽  
Gary M. Sandquist ◽  
David Martinez Pardo

Reducing the amount of carbon dioxide emitted to the atmosphere is a major goal and an imperative need for most of the world’s nations, even for those nations such as the USA who are not Kyoto Treaty signatories. A response by the current USA administration is to develop a national transportation economy for automobiles based upon efficient, environmentally sound fuel cells. However, hydrogen is a secondary fuel requiring a primary energy source for production. Nuclear power (or renewables such as hydroelectric, wind or solar) must be the source of the primary energy required to produce hydrogen from water, if the overall energy system is to be free of carbon dioxide emissions to the atmosphere. The dissociation of water leaves oxygen as a major byproduct. Currently, there are no existing commercial markets for the large quantities of oxygen that would result from a US transportation economy based upon hydrogen fuel cells. However, Integrated Coal Gasification Combined Cycle (IGCC) power plants operating on pure oxygen for both gasification and combustion produce no greenhouse gas releases. This highly desirable feature results from the combustion output being only water and carbon dioxide. Pure CO2 can be relatively easily captured and delivered to a sequestration site. Also, hazardous trace metal compounds (e.g., Hg, As, Pb, Sn, Sb, Se, U, Th, etc.) that would ordinarily be emitted to the atmosphere could be captured as solids, for environmentally acceptable disposal.


Author(s):  
Wolfgang Sanz ◽  
Herbert Jericha ◽  
Bernhard Bauer ◽  
Emil Göttlich

Since the Kyoto conference, there is a broad consensus that the human emission of greenhouse gases, mainly CO2, has to be reduced. In the power generation sector, there are three main alternatives that are currently studied worldwide. Among them oxy-fuel cycles with internal combustion with pure oxygen are a very promising technology. Within the European project ENCAP (enhanced CO2 capture) the benchmarking of a number of novel power cycles with CO2 capture was carried out. Within the category oxy-fuel cycles, the Graz Cycle and the semiclosed oxy-fuel combustion combined cycle (SCOC-CC) both achieved a net efficiency of nearly 50%. In a second step, a qualitative comparison of the critical components was performed according to their technical maturity. In contrast to the Graz Cycle, the study authors claimed that no major technical barriers would exist for the SCOC-CC. In this work, the ENCAP study is repeated for the SCOC-CC and for a modified Graz Cycle variant as presented at the ASME IGTI Conference 2006. Both oxy-fuel cycles are thermodynamically investigated based on common assumptions agreed upon with the industry in previous work. The calculations showed that the high-temperature turbine of the SCOC-CC plant needs a much higher cooling flow supply due to the less favorable properties of the working fluid. A layout of the main components of both cycles is further presented, which shows that both cycles rely on the new designs of the high-temperature turbine and the compressors. The SCOC-CC compressor needs more stages due to a lower rotational speed but has a more favorable operating temperature. In general, all turbomachines of both cycles show similar technical challenges and are regarded as feasible.


Author(s):  
Eric Liese

This paper examines the arrangement of a solid oxide fuel cell (SOFC) within a coal gasification cycle, this combination generally being called an integrated gasification fuel cell cycle. This work relies on a previous study performed by the National Energy Technology Laboratory (NETL) that details thermodynamic simulations of integrated gasification combined cycle (IGCC) systems and considers various gasifier types and includes cases for 90% CO2 capture (2007, “Cost and Performance Baseline for Fossil Energy Plants, Vol. 1: Bituminous Coal and Natural Gas to Electricity,” National Energy Technology Laboratory Report No. DOE/NETL-2007/1281). All systems in this study assume a Conoco Philips gasifier and cold-gas clean up conditions for the coal gasification system (Cases 3 and 4 in the NETL IGCC report). Four system arrangements, cases, are examined. Cases 1 and 2 remove the CO2 after the SOFC anode. Case 3 assumes steam addition, a water-gas-shift (WGS) catalyst, and a Selexol process to remove the CO2 in the gas cleanup section, sending a hydrogen-rich gas to the fuel cell anode. Case 4 assumes Selexol in the cold-gas cleanup section as in Case 3; however, there is no steam addition, and the WGS takes places in the SOFC and after the anode. Results demonstrate significant efficiency advantages compared with IGCC with CO2 capture. The hydrogen-rich case (Case 3) has better net electric efficiency compared with typical postanode CO2 capture cases (Cases 1 and 2), with a simpler arrangement but at a lower SOFC power density, or a lower efficiency at the same power density. Case 4 gives an efficiency similar to Case 3 but also at a lower SOFC power density. Carbon deposition concerns are also discussed.


2021 ◽  
Author(s):  
Osamah Alsayegh

Abstract This paper examines the energy transition consequences on the oil and gas energy system chain as it propagates from net importing through the transit to the net exporting countries (or regions). The fundamental energy system security concerns of importing, transit, and exporting regions are analyzed under the low carbon energy transition dynamics. The analysis is evidence-based on diversification of energy sources, energy supply and demand evolution, and energy demand management development. The analysis results imply that the energy system is going through technological and logistical reallocation of primary energy. The manifestation of such reallocation includes an increase in electrification, the rise of energy carrier options, and clean technologies. Under healthy and normal global economic growth, the reallocation mentioned above would have a mild effect on curbing the oil and gas primary energy demands growth. A case study concerning electric vehicles, which is part of the energy transition aspect, is presented to assess its impact on the energy system, precisely on the fossil fuel demand. Results show that electric vehicles are indirectly fueled, mainly from fossil-fired power stations through electric grids. Moreover, oil byproducts use in the electric vehicle industry confirms the reallocation of the energy system components' roles. The paper's contribution to the literature is the portrayal of the energy system security state under the low carbon energy transition. The significance of this representation is to shed light on the concerns of the net exporting, transit, and net importing regions under such evolution. Subsequently, it facilitates the development of measures toward mitigating world tensions and conflicts, enhancing the global socio-economic wellbeing, and preventing corruption.


2021 ◽  
Vol 11 ◽  
pp. 55-61
Author(s):  
Thuong San Ngo

Oil and gas is a non-renewable resource that plays an important role in the economy. It is forecasted that by the middle of the twenty-first century, oil and gas still holds the leading position in primary energy balance in many countries. The world energy consumption in 2020 was over 4.1 billion tons of oil and 3,853 billion m3 of gas [1]. During 60 years of construction and development, Vietnam's oil and gas industry has made important contributions to the economy, especially helping the country overcome the energy crisis and budget deficit in the 1990s. By the end of 2020, the total production amounted to over 424 million tons of oil and condensate, and over 160 billion m3 of gas; at one time even contributing nearly 30% of the State budget and 22 - 25% of the GDP. Especially, the formation of important coastal petroleum industrial zones and oil and gas projects on the continental shelf have contributed to ensuring national sovereignty and national security. The demand for oil and gas in the energy balance increases rapidly with the speed of socio-economic development. It is forecasted that in the near future, Vietnam will no longer be self-sufficient in supply and must import completely to meet the country's energy demand. In parallel with proactively implementing urgent technical and technological solutions, Vietnam's oil and gas industry needs mechanisms to increase reserves and maintain oil and gas output, as well as prepare the next steps for transition to energy forms with low greenhouse gas emissions and renewable energy.


2019 ◽  
Vol 12 (7) ◽  
pp. 2161-2173 ◽  
Author(s):  
Rebecca L. Siegelman ◽  
Phillip J. Milner ◽  
Eugene J. Kim ◽  
Simon C. Weston ◽  
Jeffrey R. Long

As natural gas supplies a growing share of global primary energy, new research efforts are needed to develop adsorbents for carbon capture from gas-fired power plants alongside efforts targeting emissions from coal-fired plants.


Author(s):  
Guenther Haupt ◽  
John S. Joyce ◽  
Konrad Kuenstle

The environmental impact of unfired combined-cycle blocks of the GUD® type is compared with that of equivalent reheat steam boiler/turbine units. The outstandingly high efficiency of GUD blocks not only conserves primary-energy resources, but also commensurately reduces undesirable emissions and unavoidable heat rejection to the surroundings. In addition to conventional gas or oil-fired GUD blocks, integrated coal-gasification combined-cycle (ICG-GUD) blocks are investigated from an ecological point of view so as to cover the whole range of available fossil fuels. For each fuel and corresponding type of GUD power plant the most appropriate conventional steam-generating unit of most modern design is selected for comparison purposes. In each case the relative environmental impact is stated in the form of quantified emissions, effluents and waste heat, as well as of useful byproducts and disposable solid wastes. GUD blocks possess the advantage that they allow primary measures to be taken to minimize the production of NOx and SOx, whereas both have to be removed from the flue gases of conventional steam stations by less effective and desirable, albeit more expensive secondary techniques, e.g. flue-gas desulfurization and DENOX systems. In particular, the comparison of CO2 release reveals a significantly lower contribution by GUD blocks to the greenhouse effect than by other fossil-fired power plants.


Author(s):  
Aristide Massardd ◽  
Gian Marid Arnulfi

In this paper three Closed Combined Cycle (C3) systems for underwater power generation are analyzed. In the first, the waste heat rejected by a Closed Brayton Cycle (CBC) is utilized to heat the working fluid of a bottoming Rankine Cycle; in the second, the heat of a primary energy loop fluid is used to heat both CBC and Rankine cycle working fluids; the third solution involves a Metal Rankine Cycle (MRC) combined with an Organic Rankine Cycle (ORC). The significant benefits of the Closed Combined Cycle concepts, compared to the simple CBC system, such as efficiency increase and specific mass reduction, are presented and discussed. A comparison between the three C3 power plants is presented taking into account the technological maturity of all the plant components.


Subject Long-term energy markets outlook. Significance The International Energy Agency (IEA) has upgraded its forecast for total primary energy demand (TPED) to 2040 for the first time since it began projecting this far out in 2014. Impacts The IEA’s belief that the world is on an environmentally unsustainable path will bolster decarbonisation efforts nationally and globally. The IEA does not see oil demand peaking by 2040; this and gas’s growing share of global demand will help sustain oil and gas investment. China and India switching from coal to gas will reduce coal’s share of energy demand even though India’s official targets are optimistic.


Sign in / Sign up

Export Citation Format

Share Document