Enhanced Film Cooling Effectiveness With New Shaped Holes

Author(s):  
Jong S. Liu ◽  
Malak F. Malak ◽  
Luis A. Tapia ◽  
Daniel C. Crites ◽  
Dhinagaran Ramachandran ◽  
...  

Gas Turbine Engines operate at temperatures higher than current material temperature limits. This necessitates cooling the metal through internal or external means and/ or protecting the metal with coatings that have higher material limits. Film cooling is one of the major technologies allowing today’s gas turbines to operate at extremely high turbine inlet temperatures, consequently higher power density, and extend the cooled components life. Film cooling is a technique where a coolant is blown over the surface exposed to hot gas and a film of low temperature gas is maintained that protects the metal surface from the hot gas. The application of effective film-cooling techniques provides the first and best line of defense for hot gas path surfaces against the onslaught of extreme heat fluxes, serving to directly reduce the incident convective heat flux on the surface. The effectiveness of film cooling methods depends on the blowing ratio, shape of the cooling holes, and geometrical parameters such as the area ratio and diffusion angle. Film cooling is performed almost exclusively through the use of discrete holes. The holes can be of round or other shaped. A detailed study of the literature shows that the fan shaped has higher effectiveness when compared to other shapes. In this study a number of cooling hole shapes are evaluated numerically using the Computational Fluid Dynamics (CFD) tool ANSYS-CFX-11.0 with the objective of improving cooling effectiveness under a favorable pressure gradient main flow. In order to delineate the effects of shape from that of diffusion, a constant area ratio is assumed first. In the next set of analyses the effect of hole exit diffusion is considered. Results are presented in terms of surface temperatures and adiabatic effectiveness at three different blowing ratios for the different film cooling hole shapes analyzed. Comparison is made with reference to the fan shaped film cooling hole with forward and lateral angles of 10/10/10 degree respectively. Hole shapes that show improvement over the fan shaped hole are identified and optimized.

2015 ◽  
Vol 773-774 ◽  
pp. 373-377
Author(s):  
Kamil Abdullah ◽  
Firdauz Amon ◽  
Mas Fawzi Mohd Ali

Modern gas turbines require a sophisticated cooling scheme to remove the heat from its component to ensure it durability. One of the common techniques applied in the cooling scheme is film cooling The present study focuses numerical investigation of an sister cooling hole design. The investigations make use of commercial CFD software, ANSYS CFX. The numerical investigations have been carried out at Reynolds number, Re = 21,000 involving three differens blowing ratios, BR = 0.5, 1.0, and 1.5. Four different cases have been considered; STA, STB STC and SH. The results show promising improvement in terms of film cooling effectiveness with the implementation of sister holes in certain geometrical arrangements.


Author(s):  
Sadam Hussain ◽  
Xin Yan

Abstract Film cooling is one of the most critical technologies in modern gas turbine engine to protect the high temperature components from erosion. It allows gas turbines to operate above the thermal limits of blade materials by providing the protective cooling film layer on outer surfaces of blade against hot gases. To get a higher film cooling effect on plain surface, current study proposes a novel strategy with the implementation of hole-pair into ramp. To gain the film cooling effectiveness on the plain surface, RANS equations combined with k-ω turbulence model were solved with the commercial CFD solver ANSYS CFX11.0. In the numerical simulations, the density ratio (DR) is fixed at 1.6, and the film cooling effect on plain surface with different configurations (i.e. with only cooling hole, with only ramp, and with hole-pair in ramp) were numerically investigated at three blowing ratios M = 0.25, 0.5, and 0.75. The results show that the configuration with Hole-Pair in Ramp (HPR) upstream the cooling hole has a positive effect on film cooling enhancement on plain surface, especially along the spanwise direction. Compared with the baseline configuration, i.e. plain surface with cylindrical hole, the laterally-averaged film cooling effectiveness on plain surface with HPR is increased by 18%, while the laterally-averaged film cooling effectiveness on plain surface with only ramp is increased by 8% at M = 0.5. As the blowing ratio M increases from 0.25 to 0.75, the laterally-averaged film cooling effectiveness on plain surface with HPR is kept on increasing. At higher blowing ratio M = 0.75, film cooling effectiveness on plain surface with HPR is about 19% higher than the configuration with only ramp.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Jacob C. Snyder ◽  
Karen A. Thole

Abstract Film cooling is an essential cooling technology to allow modern gas turbines to operate at high temperatures. For years, researchers in this community have worked to improve the effectiveness of film cooling configurations by maximizing the coolant coverage and minimizing the heat flux from the hot gas into the part. Working toward this goal has generated many promising film cooling concepts with unique shapes and configurations. However, until recently, many of these designs were challenging to manufacture in actual turbine hardware due to limitations with legacy manufacturing methods. Now, with the advances in additive manufacturing, it is possible to create turbine parts using high-temperature nickel alloys that feature detailed and unique geometry features. Armed with this new manufacturing power, this study aims to build and test the promising designs from the public literature that were previously difficult or impossible to implement. In this study, different cooling hole designs were manufactured in test coupons using a laser powder bed fusion process. Each nickel alloy coupon featured a single row of engine scale cooling holes, fed by a microchannel. To evaluate performance, the overall cooling effectiveness of each coupon was measured using a matched Biot test at engine relevant conditions. The results showed that certain hole shapes are better suited for additive manufacturing than others and that the manufacturing process can cause significant deviations from the performance reported in the literature.


Author(s):  
Zhongran Chi ◽  
Chang Han ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang

A tripod cylindrical film hole with asymmetric side holes is studied numerically and experimentally on a flat plate for higher film cooling effectiveness. Firstly, the influences of geometrical parameters are studied and the optimum configurations of the asymmetric tripod hole are found in a DoE optimization study based on an improved numerical model for film cooling prediction, in which more than one hundred 3D CFD simulations are carried out. Then one optimum configuration of the asymmetric tripod hole is examined experimentally using pressure-sensitive paint (PSP) measurements, and compared against the experimental results of the simple cylindrical film hole and a well-designed shaped film hole. The flow and heat transfer characteristics of the asymmetric tripod holes were explored from the DoE results. The side holes can form a shear vortex system or an anti-kidney vortex system when proper spanwise distances of them are adopted, which laterally transports the coolant and form a favorable coolant coverage. According to the experimental results, the cooling performance of the optimized asymmetric tripod hole is significantly better than that of the simple cylindrical hole, especially at high blowing ratios. And the optimized asymmetric tripod hole can provide almost the same or even higher film cooling effectiveness on the flat plate compared with the shaped hole in the same flow conditions.


Author(s):  
K. Vighneswara Rao ◽  
Jong S. Liu ◽  
Daniel C. Crites ◽  
Luis A. Tapia ◽  
Malak F. Malak ◽  
...  

In this study, cylindrical and fan shaped film cooling holes are evaluated on the blade surface numerically, using the Computational Fluid Dynamics (CFD) tool ANSYS-CFX, with the objective of improving cooling effectiveness by understanding the flow pattern at the cooling hole exit. The coolant flow rates are adjusted for blowing ratios of 0.5, 1.0 & 1.5 (momentum flux ratios of 0.125, 0.5 & 1.125 respectively). The density ratio is maintained at 2.0. New shaped holes viz. straight, concave and convex trench holes are introduced and are evaluated under similar operating conditions. Results are presented in terms of surface temperatures and adiabatic effectiveness at three different blowing ratios for the different film cooling hole shapes analyzed. Comparison is made with reference to the fan shaped film cooling hole to bring out relative merits of different shapes. The new trench holes improved the film cooling effectiveness by allowing more residence time for coolant to spread laterally while directing smoothly onto the airfoil surface. While convex trench improved the centre-line effectiveness, straight trench improved the laterally-averaged and overall effectiveness at all blowing ratios. Concave trench improved the effectiveness at blowing ratios 0.5 and 1.0.


Author(s):  
Jens Dickhoff ◽  
Karsten Kusterer ◽  
Santhosh Kumar Bhaskar ◽  
Dieter Bohn

In modern gas turbines, film cooling technology is essential for the protection of hot parts. Today, shaped holes are widely used, but besides others, the NEKOMIMI-shaped cooling holes have shown that there is still potential to increase the film cooling effectiveness significantly by generation of Anti-Counter-Rotating Vortices (ACRV). Within the past decade, the technology has been improved step by step at B&B-AGEMA and Kawasaki Heavy Industries Ltd.; mainly by means of numerical simulations. The laterally averaged film cooling effectiveness is typically captured with acceptable accuracy, but the experimental measurements still show a deviation from the numerically obtained results with respect to the local film cooling effectiveness distribution behind the film cooling hole. Nevertheless, the film cooling air spread out in the lateral direction is one of the keys for enhancement of the film cooling performance. Thus, more precise simulations are consequently necessary for improvement of the hole shape configuration. The present study involves simulations of a baseline fan shaped hole configuration (“777 hole” investigated by Schroeder and Thole [1][2]) using different turbulence models available in STAR-CCM+ with isotropic and anisotropic turbulence consideration (constitutive relations). Distinct differences with respect to flow phenomena (detachments and vortex creation) can be observed depending on the applied turbulence model. In total, the results show that anisotropic viscosity strongly influences the film cooling performance prediction by CFD for prediction of the film cooling effectiveness, but none of the models provides acceptable accuracy in this regard.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Zhongran Chi ◽  
Jing Ren ◽  
Hongde Jiang ◽  
Shusheng Zang

A tripod cylindrical film hole with asymmetric side holes is studied numerically and experimentally on a flat plate for higher film cooling effectiveness. First, the influences of geometrical parameters are studied and the optimum configurations of the asymmetric tripod hole are found in a design of experiments (DoE) optimization study based on an improved numerical model for film cooling prediction, in which more than 100 3D computational fluid dynamics (CFD) simulations are carried out. Then, one optimum configuration of the asymmetric tripod hole is examined experimentally using pressure-sensitive paint (PSP) measurements and compared to the experimental results of the simple cylindrical film hole and a well-designed shaped film hole. The flow and heat transferring characteristics of the asymmetric tripod holes were explored from the DoE results. The side holes can form a shear vortex system or an antikidney vortex system when proper spanwise distances between them are adopted, which laterally transports the coolant and form a favorable coolant coverage. According to the experimental results on flat plate, the optimal configuration of the asymmetric tripod hole is significantly better than cylindrical hole, especially at high blowing ratios. Furthermore, it can provide equivalent or even higher film cooling effectiveness than a well-designed shaped hole.


Author(s):  
Karsten Kusterer ◽  
Nurettin Tekin ◽  
Azadeh Kasiri ◽  
Dieter Bohn ◽  
Takao Sugimoto ◽  
...  

In modern gas turbines, the film cooling technology is essential for the protection of the hot parts, in particular of the first stage vanes and blades of the turbine, against the hot gases from the combustion process in order to reach an acceptable life span of the components. As the cooling air is usually extracted from the compressor, the reduction of the cooling effort would directly result to an increased thermal efficiency of the gas turbine. Understanding of the fundamental physics of film cooling is necessary for the improvement of the state-of-the-art. Thus, huge research efforts by industry as well as research organizations have been undertaken to establish high efficient film cooling technologies. It is common knowledge today that film cooling effectiveness degradation is caused by secondary flows inside the cooling jets, i.e. the Counter-Rotating Vortices (CRV) or sometimes also mentioned as kidney-vortices, which induce a lift-off of the jet. Further understanding of the secondary flow development inside the jet and how this could be influenced, has led to hole configurations, which can induce Anti-counter-rotating Vortices (ACRV) in the cooling jets. As a result, the cooling air remains close to the wall and is additionally distributed flatly along the surface. Beside different other technologies, the NEKOMIMI cooling technology is a promising approach to establish the desired ACRV. It consists of a combination of two holes in just one configuration so that the air is distributed mainly on two cooling air streaks following the special shape of the generated geometry. The original configuration was found to be difficult for fabrication by advanced machining processes. Thus, the improvement of this configuration has been reached by a set of geometry parameters, which lead to configurations easier to be manufactured but preserving the principle of the NEKOMIMI technology. Within a numerical parametric study several advanced configurations have been obtained and investigated under hot gas flow conditions. By systematic variation of the parameters a further optimization with respect to highest film cooling effectiveness has been performed. The best configuration outperforms the basic configuration by more than 20% regarding the overall averaged adiabatic film cooling effectiveness.


2011 ◽  
Vol 134 (4) ◽  
Author(s):  
Christian Heneka ◽  
Achmed Schulz ◽  
Hans-Jörg Bauer ◽  
Andreas Heselhaus ◽  
Michael E. Crawford

An experimental study on film cooling performance of laterally inclined diffuser shaped cooling holes is presented. The measurements have been conducted on a flat plate with coolant ejected from a plenum. The film cooling effectiveness downstream of a row of four laidback fanshaped holes with sharp edged diffusers has been determined by means of infrared (IR) thermography. A variety of geometric parameters has been tested, including the inclination angle, the compound angle, the area ratio, and the pitch to diameter ratio. All tests have been performed over a wide range of engine typical blowing ratios (M=0.5–3.0). The hot gas Reynolds number and the coolant to hot gas density ratio have been kept constant close to engine realistic conditions. The results, presented in terms of contour plots of related adiabatic film cooling effectiveness as well as laterally averaged related values, clearly show the influences of the cooling hole geometry. Increasing the area ratio and the compound angle, in general, leads to higher values of the effectiveness, whereas steeper injection causes a reduction of the effectiveness.


2005 ◽  
Vol 127 (4) ◽  
pp. 718-725 ◽  
Author(s):  
Michael Gritsch ◽  
Will Colban ◽  
Heinz Schär ◽  
Klaus Döbbeling

This study evaluates the impact of typical cooling hole shape variations on the thermal performance of fan-shaped film holes. A comprehensive set of experimental test cases featuring 16 different film-cooling configurations with different hole shapes have been investigated. The shape variations investigated include hole inlet-to-outlet area ratio, hole coverage ratio, hole pitch ratio, hole length, and hole orientation (compound) angle. Flow conditions applied cover a wide range of film blowing ratios M=0.5 to 2.5 at an engine-representative density ratio DR=1.7. An infrared thermography data acquisition system is used for highly accurate and spatially resolved surface temperature mappings. Accurate local temperature data are achieved by an in situ calibration procedure with the help of thermocouples embedded in the test plate. Detailed film-cooling effectiveness distributions and discharge coefficients are used for evaluating the thermal performance of a row of fan-shaped film holes. An extensive variation of the main geometrical parameters describing a fan-shaped film-cooling hole is done to cover a wide range of typical film-cooling applications in current gas turbine engines. Within the range investigated, laterally averaged film-cooling effectiveness was found to show only limited sensitivity from variations of the hole geometry parameters. This offers the potential to tailor the hole geometry according to needs beyond pure cooling performance, e.g., manufacturing facilitations.


Sign in / Sign up

Export Citation Format

Share Document