Film Cooling Performance of Sharp Edged Diffuser Holes With Lateral Inclination

2011 ◽  
Vol 134 (4) ◽  
Author(s):  
Christian Heneka ◽  
Achmed Schulz ◽  
Hans-Jörg Bauer ◽  
Andreas Heselhaus ◽  
Michael E. Crawford

An experimental study on film cooling performance of laterally inclined diffuser shaped cooling holes is presented. The measurements have been conducted on a flat plate with coolant ejected from a plenum. The film cooling effectiveness downstream of a row of four laidback fanshaped holes with sharp edged diffusers has been determined by means of infrared (IR) thermography. A variety of geometric parameters has been tested, including the inclination angle, the compound angle, the area ratio, and the pitch to diameter ratio. All tests have been performed over a wide range of engine typical blowing ratios (M=0.5–3.0). The hot gas Reynolds number and the coolant to hot gas density ratio have been kept constant close to engine realistic conditions. The results, presented in terms of contour plots of related adiabatic film cooling effectiveness as well as laterally averaged related values, clearly show the influences of the cooling hole geometry. Increasing the area ratio and the compound angle, in general, leads to higher values of the effectiveness, whereas steeper injection causes a reduction of the effectiveness.

Author(s):  
Christian Heneka ◽  
Achmed Schulz ◽  
Hans-Jo¨rg Bauer ◽  
Andreas Heselhaus ◽  
Michael E. Crawford

An experimental study on film cooling performance of laterally inclined diffuser shaped cooling holes is presented. The measurements have been conducted on a flat plate with coolant ejected from a plenum. The film cooling effectiveness downstream of a row of four laidback fanshaped holes with sharp-edged diffusers has been determined by means of IR thermography. A variety of geometric parameters has been tested, including the inclination angle, the compound angle, the area ratio, and the pitch to diameter ratio. All tests have been performed over a wide range of engine typical blowing ratios (M = 0.5–3.0). The hot gas Reynolds number and the coolant to hot gas density ratio have been kept constant close to engine realistic conditions. The results, presented in terms of contour plots of related adiabatic film cooling effectiveness as well as laterally averaged related values, clearly show the influences of the cooling hole geometry. Increasing the area ratio and the compound angle, in general, leads to higher values of the effectiveness, whereas steeper injection causes a reduction of the effectiveness.


2003 ◽  
Vol 125 (3) ◽  
pp. 547-554 ◽  
Author(s):  
Michael Gritsch ◽  
Achmed Schulz ◽  
Sigmar Wittig

Film-cooling was the subject of numerous studies during the past decades. However, the effect of flow conditions on the entry side of the film-cooling hole on film-cooling performance has surprisingly not received much attention. A stagnant plenum which is widely used in experimental and numerical studies to feed the holes is not necessarily a right means to re-present real engine conditions. For this reason, the present paper reports on an experimental study investigating the effect of a coolant crossflow feeding the holes that is oriented perpendicular to the hot gas flow direction to model a flow situation that is, for instance, of common use in modern turbine blades’ cooling schemes. A comprehensive set of experiments was performed to evaluate the effect of perpendicular coolant supply direction on film-cooling effectiveness over a wide range of blowing ratios (M=0.5…2.0) and coolant crossflow Mach numbers Mac=0…0.6. The coolant-to-hot gas density ratio, however, was kept constant at 1.85 which can be assumed to be representative for typical gas turbine applications. Three different hole geometries, including a cylindrical hole as well as two holes with expanded exits, were considered. Particularly, two-dimensional distributions of local film-cooling effectiveness acquired by means of an infrared camera system were used to give detailed insight into the governing flow phenomena. The results of the present investigation show that there is a profound effect of how the coolant is supplied to the hole on the film-cooling performance in the near hole region. Therefore, crossflow at the hole entry side has be taken into account when modeling film-cooling schemes of turbine bladings.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Mukesh Prakash Mishra ◽  
A K Sahani ◽  
Sunil Chandel ◽  
R K Mishra

Abstract Characteristics of full coverage film cooling of an adiabatic flat plate are studied for opposite injection of coolant at different angles. Two in-line adjacent rows of cooling holes injecting in opposite directions are considered in this study. The cooling performance is compared with the configurations having forward and reverse injecting holes at similar injection angles. The holes are arranged in an array of 20 rows with equal spacing both span-wise and stream-wise. Computational analyses are carried out over a wide range of velocity ratios (VR) of practical importance ranging from 0.5 to 2.0 at density ratio of about 1.0. Injection angle and velocity ratio are found to have strong influence on film cooling effectiveness of opposite injection. At low velocity ratio of VR=0.5, film cooling performance of opposite injection at 45° is found better than at other angles, i. e. 30° and 60°. At higher velocity ratios, injection at 30° is found superior. Film cooling effectiveness becomes insensitive to velocity ratios at higher range for 45° and 60° injections. Evolution of effusion film layer and interaction between coolant and primary flow is also studied in this paper.


1999 ◽  
Vol 122 (2) ◽  
pp. 224-232 ◽  
Author(s):  
C. M. Bell ◽  
H. Hamakawa ◽  
P. M. Ligrani

Local and spatially averaged magnitudes of the adiabatic film cooling effectiveness, the iso-energetic Stanton number ratio, and film cooling performance parameter are measured downstream of (i) cylindrical round, simple angle (CYSA) holes, (ii) laterally diffused, simple angle (LDSA) holes, (iii) laterally diffused, compound angle (LDCA) holes, (iv) forward diffused, simple angle (FDSA) holes, and (v) forward diffused, compound angle (FDCA) holes. Data are presented for length-to-inlet metering diameter ratio of 3, blowing ratios from 0.4 to 1.8, momentum flux ratios from 0.17 to 3.5, and density ratios from 0.9 to 1.4. The LDCA and FDCA arrangements produce higher effectiveness magnitudes over much wider ranges of blowing ratio and momentum flux ratio compared to the three simple angle configurations tested. All three simple angle hole geometries, CYSA, FDSA, and LDSA, show increases of spanwise-averaged adiabatic effectiveness as the density ratio increases from 0.9 to 1.4, which are larger than changes measured downstream of FDCA and LDCA holes. Iso-energetic Stanton number ratios downstream of LDCA and FDCA holes (measured with unity density ratios) are generally increased relative to simple angle geometries for m⩾1.0 when compared at particular normalized streamwise locations, x/D, and blowing ratios, m. Even though this contributes to higher performance parameters and lower protection, overall film cooling performance parameter q˙″/q˙o″ variations with x/D and m are qualitatively similar to variations of adiabatic film cooling effectiveness with x/D and m. Consequently, the best overall protection over the widest ranges of blowing ratios, momentum flux ratios, and streamwise locations is provided by LDCA holes, followed by FDCA holes. Such improvements in protection are partly due to film diffusion from expanded hole shapes, as well as increased lateral spreading of injectant from compound angles. [S0022-1481(00)02202-7]


Author(s):  
Lesley M. Wright ◽  
Stephen T. McClain ◽  
Charles P. Brown ◽  
Weston V. Harmon

A novel, double hole film cooling configuration is investigated as an alternative to traditional cylindrical and fanshaped, laidback holes. This experimental investigation utilizes a Stereo-Particle Image Velocimetry (S-PIV) to quantitatively assess the ability of the proposed, double hole geometry to weaken or mitigate the counter-rotating vortices formed within the jet structure. The three-dimensional flow field measurements are combined with surface film cooling effectiveness measurements obtained using Pressure Sensitive Paint (PSP). The double hole geometry consists of two compound angle holes. The inclination of each hole is θ = 35°, and the compound angle of the holes is β = ± 45° (with the holes angled toward one another). The simple angle cylindrical and shaped holes both have an inclination angle of θ = 35°. The blowing ratio is varied from M = 0.5 to 1.5 for all three film cooling geometries while the density ratio is maintained at DR = 1.0. Time averaged velocity distributions are obtained for both the mainstream and coolant flows at five streamwise planes across the fluid domain (x/d = −4, 0, 1, 5, and 10). These transverse velocity distributions are combined with the detailed film cooling effectiveness distributions on the surface to evaluate the proposed double hole configuration (compared to the traditional hole designs). The fanshaped, laidback geometry effectively reduces the strength of the kidney-shaped vortices within the structure of the jet (over the entire range of blowing ratios considered). The three-dimensional velocity field measurements indicate the secondary flows formed from the double hole geometry strengthen in the plane perpendicular to the mainstream flow. At the exit of the double hole geometry, the streamwise momentum of the jets is reduced (compared to the single, cylindrical hole), and the geometry offers improved film cooling coverage. However, moving downstream in the steamwise direction, the two jets form a single jet, and the counter-rotating vortices are comparable to those formed within the jet from a single, cylindrical hole. These strong secondary flows lift the coolant off the surface, and the film cooling coverage offered by the double hole geometry is reduced.


Author(s):  
Kevin Liu ◽  
Shang-Feng Yang ◽  
Je-Chin Han

A detailed parametric study of film-cooling effectiveness was carried out on a turbine blade platform. The platform was cooled by purge flow from a simulated stator–rotor seal combined with discrete hole film-cooling. The cylindrical holes and laidback fan-shaped holes were accessed in terms of film-cooling effectiveness. This paper focuses on the effect of coolant-to-mainstream density ratio on platform film-cooling (DR = 1 to 2). Other fundamental parameters were also examined in this study—a fixed purge flow of 0.5%, three discrete-hole film-cooling blowing ratios between 1.0 and 2.0, and two freestream turbulence intensities of 4.2% and 10.5%. Experiments were done in a five-blade linear cascade with inlet and exit Mach number of 0.27 and 0.44, respectively. Reynolds number of the mainstream flow was 750,000 and was based on the exit velocity and chord length of the blade. The measurement technique adopted was the conduction-free pressure sensitive paint (PSP) technique. Results indicated that with the same density ratio, shaped holes present higher film-cooling effectiveness and wider film coverage than the cylindrical holes, particularly at higher blowing ratios. The optimum blowing ratio of 1.5 exists for the cylindrical holes, whereas the effectiveness for the shaped holes increases with an increase of blowing ratio. Results also indicate that the platform film-cooling effectiveness increases with density ratio but decreases with turbulence intensity.


Author(s):  
S. Baldauf ◽  
A. Schulz ◽  
S. Wittig

Local adiabatic film cooling effectiveness on a flat plate surface downstream a row of cylindrical holes was investigated. Geometrical parameters like blowing angle and hole pitch as well as the flow parameters blowing rate and density ratio were varied in a wide range emphasizing on engine relevant conditions. An IR-thermography technique was used to perform local measurements of the surface temperature field. A spatial resolution of up to 7 data points per hole diameter extending up to 80 hole diameters downstream of the ejection location was achieved. Since all technical surface materials have a finite thermoconductivity, no ideal adiabatic conditions could be established. Therefore, a procedure for correcting the measured surface temperature data based on a Finite Element analysis was developed. Heat loss over the backside of the testplate and remnant heat flux within the testplate in lateral and streamwise direction were taken into account. The local effectiveness patterns obtained are systematically analyzed to quantify the influence of the various parameters. As a result, a detailed description of the characteristics of local adiabatic film cooling effectiveness is given. Furthermore, the locally resolved experimental results can serve as a data base for the validation of CFD-codes predicting discrete hole film cooling.


1996 ◽  
Vol 118 (2) ◽  
pp. 278-284 ◽  
Author(s):  
M. Y. Jabbari ◽  
K. C. Marston ◽  
E. R. G. Eckert ◽  
R. J. Goldstein

Film cooling performance for injection through discrete holes in the endwall of a turbine blade is investigated. The effectiveness is measured at 60 locations in the region covered by injection. Three nominal blowing rates, two density ratios, and two approaching flow Reynolds numbers are examined. Analysis of the data reveals that even 60 locations are insufficient for the determination of the field of film cooling effectiveness with its strong local variations. Visualization of the traces of the coolant jets on the endwall surface, using ammonium-diazo-paper, provides useful qualitative information for the interpretation of the measurements, revealing the paths and interaction of the jets, which change with blowing rate and density ratio.


2000 ◽  
Vol 123 (2) ◽  
pp. 222-230 ◽  
Author(s):  
R. J. Goldstein ◽  
P. Jin

A special naphthalene sublimation technique is used to study the film cooling performance downstream of one row of holes of 35 deg inclination angle and 45 deg compound angle with 3d hole spacing and relatively small hole length to diameter ratio (6.3). Both film cooling effectiveness and mass/heat transfer coefficients are determined for blowing rates from 0.5 to 2.0 with density ratio of unity. The mass transfer coefficient is measured using pure air film injection, while the film cooling effectiveness is derived from comparison of mass transfer coefficients obtained following injection of naphthalene-vapor-saturated air with that of pure air injection. This technique enables one to obtain detailed local information on film cooling performance. General agreement is found in local film cooling effectiveness when compared with previous experiments. The laterally averaged effectiveness with compound angle injection is higher than that with inclined holes immediately downstream of injection at a blowing rate of 0.5 and is higher at all locations downstream of injection at larger blowing rates. A large variation of mass transfer coefficients in the lateral direction is observed in the present study. At low blowing rates of 0.5 and 1.0, the laterally averaged mass transfer coefficient is close to that of injection without compound angle. At the highest blowing rate used (2.0), the asymmetric vortex motion under the jets increases the mass transfer coefficient drastically ten diameters downstream of injection.


Author(s):  
Shang-Feng Yang ◽  
Je-Chin Han ◽  
Alexander MirzaMoghadam ◽  
Ardeshir Riahi

This paper studies the effect of transonic flow velocity on local film cooling effectiveness distribution of turbine vane suction side, experimentally. A conduction-free Pressure Sensitive Paint (PSP) method is used to determine the local film cooling effectiveness. Tests were performed in a five-vane annular cascade at Texas A&M Turbomachinery laboratory blow-down flow loop facility. The exit Mach numbers are controlled to be 0.7, 0.9, and 1.1, from subsonic to transonic flow conditions. Three foreign gases N2, CO2 and Argon/SF6 mixture are selected to study the effects of three coolant-to-mainstream density ratios, 1.0, 1.5, and 2.0 on film cooling. Four averaged coolant blowing ratios in the range, 0.7, 1.0, 1.3 and 1.6 are investigated. The test vane features 3 rows of radial-angle cylindrical holes around the leading edge, and 2 rows of compound-angle shaped holes on the suction side. Results suggest that the PSP technique is capable of producing clear and detailed film cooling effectiveness contours at transonic condition. The effects of coolant to mainstream blowing ratio, density ratio, and exit Mach number on the vane suction-surface film cooling distribution are obtained, and the consequence results are presented and explained in this investigation.


Sign in / Sign up

Export Citation Format

Share Document