Geometrical Optimization and Experimental Validation of a Tripod Film Cooling Hole With Asymmetric Side Holes

2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Zhongran Chi ◽  
Jing Ren ◽  
Hongde Jiang ◽  
Shusheng Zang

A tripod cylindrical film hole with asymmetric side holes is studied numerically and experimentally on a flat plate for higher film cooling effectiveness. First, the influences of geometrical parameters are studied and the optimum configurations of the asymmetric tripod hole are found in a design of experiments (DoE) optimization study based on an improved numerical model for film cooling prediction, in which more than 100 3D computational fluid dynamics (CFD) simulations are carried out. Then, one optimum configuration of the asymmetric tripod hole is examined experimentally using pressure-sensitive paint (PSP) measurements and compared to the experimental results of the simple cylindrical film hole and a well-designed shaped film hole. The flow and heat transferring characteristics of the asymmetric tripod holes were explored from the DoE results. The side holes can form a shear vortex system or an antikidney vortex system when proper spanwise distances between them are adopted, which laterally transports the coolant and form a favorable coolant coverage. According to the experimental results on flat plate, the optimal configuration of the asymmetric tripod hole is significantly better than cylindrical hole, especially at high blowing ratios. Furthermore, it can provide equivalent or even higher film cooling effectiveness than a well-designed shaped hole.

Author(s):  
Zhongran Chi ◽  
Chang Han ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang

A tripod cylindrical film hole with asymmetric side holes is studied numerically and experimentally on a flat plate for higher film cooling effectiveness. Firstly, the influences of geometrical parameters are studied and the optimum configurations of the asymmetric tripod hole are found in a DoE optimization study based on an improved numerical model for film cooling prediction, in which more than one hundred 3D CFD simulations are carried out. Then one optimum configuration of the asymmetric tripod hole is examined experimentally using pressure-sensitive paint (PSP) measurements, and compared against the experimental results of the simple cylindrical film hole and a well-designed shaped film hole. The flow and heat transfer characteristics of the asymmetric tripod holes were explored from the DoE results. The side holes can form a shear vortex system or an anti-kidney vortex system when proper spanwise distances of them are adopted, which laterally transports the coolant and form a favorable coolant coverage. According to the experimental results, the cooling performance of the optimized asymmetric tripod hole is significantly better than that of the simple cylindrical hole, especially at high blowing ratios. And the optimized asymmetric tripod hole can provide almost the same or even higher film cooling effectiveness on the flat plate compared with the shaped hole in the same flow conditions.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Habeeb Idowu Oguntade ◽  
Gordon E. Andrews ◽  
A. D. Burns ◽  
Derek B. Ingham ◽  
Mohammed Pourkashanian

The influence of the shape of the downstream edge of trench film cooling hole outlets on film cooling effectiveness was investigated using CFD for flat plate film cooling. A 90 deg trench outlet wall with impinging 30 deg film cooling jets results in improved transverse film cooling effectiveness but produces a vertical slot jet into the cross flow, which is not the best aerodynamics for optimum film cooling. It was considered that improvements in the cooling effectiveness would occur if the trailing edge of the trench outlet produced a flow that was inclined in the direction of the crossflow. Beveled and filleted trench outlet shapes were investigated. The CFD predictions were shown to predict well the conventional sharp edged trench outlet experimental results for a flat plate geometry. The flat plate CFD predictions were also shown to predict the experimental results for trench cooling on the suction side of a turbine vane, where the local curvature was small relative to the trench width. The beveled and filleted trench outlets were predicted to suppress the vertical jet momentum and give a Coanda effect that allowed the cooling air to attach to the downstream wall surface. This produced an improved transverse spread of the coolant. Also, it was predicted that reducing the coolant mass flow per hole and increasing the number of rows of holes gave, for the same total coolant mass flow and the same surface area, a superior surface averaged cooling effectiveness.


Author(s):  
Sebastian Schulz ◽  
Simon Maier ◽  
Jeffrey P. Bons

In an attempt to abate the detrimental jet vorticity and lift-off effects at high blowing ratios, the objective of the present study is to investigate the impact of an anti-vortex film cooling hole design on the film cooling effectiveness and the secondary flow field. Furthermore, the influence of low and high turbulence levels is studied with Tu ≈ .0.7% and ≈ 10%, respectively. For the experiments infrared thermography and particle image velocimetry (PIV) are employed. The experiments are conducted in a subsonic wind tunnel at a Reynolds number of 11000 based on the film cooling hole diameter. A flat plate model with an array of three cylindrical primary holes with secondary offshoots to each side represents the anti-vortex geometry. The cylindrical hole arrangement with a diameter of 17.5 mm is inclined at 30° in streamwise direction, with the anti-vortex holes branching off from the primary hole base in a 21° angle. Information from a flat plate with six cylindrical holes of 17.5 mm in diameter inclined at 30 in streamwise direction is used as baseline for comparison. The primary hole spacing was 4.75 and 3 hole diameters, respectively. Results are presented for blowing ratios of 1 and 2 with a constant density ratio of 1.1. The PIV measurements are taken in two planes perpendicular to the flow direction to record the secondary flow structures. The results of the infrared thermography show a strong decrease in film cooling effectiveness as high turbulence levels occur, especially for low blowing ratios. For higher blowing ratios low and high turbulence levels have similar effects on film cooling effectiveness. A significant improvement in film cooling performance is displayed by the anti-vortex design over the standard circular hole arrangement for every blowing ratio. The effectiveness results reveal an improved lateral spreading of the coolant with coolant jets staying attached throughout the series of experiments. By remaining inside the boundary layer, the effects of a high turbulent freestream on film cooling performance is less. The PIV results unveil information of a new vortex pair on either side of the primary hole kidney vortex. Especially at high blowing ratios the results indicate, that the anti-vortex hole design promotes the interaction between the vortical structures, explaining the increased lateral film effectiveness results. The factor which lends to the superior performance and credibility of the studied anti-vortex design is that the results are obtained for 35% less mass flow than the baseline.


2021 ◽  
Author(s):  
Samaneh Rouina ◽  
Hamed Abdeh ◽  
Antonio Perdichizzi ◽  
Giovanna Barigozzi ◽  
Vittorio Odemondo ◽  
...  

Author(s):  
Kenichiro Takeishi ◽  
Yutaka Oda ◽  
Shinpei Kondo

This paper describes an experimental study on the film cooling effectiveness of circular and fan-shaped film cooling holes with a swirling film coolant injected through a flat plate and the endwall of a high-loaded first nozzle. The experiments were conducted using a flat plate wind tunnel and a two-dimensional vane cascade, which is designed based on the first-stage vane of an Energy Efficient Engine (E3) studied under a NASA project. The film cooling effectiveness on a flat plate wind tunnel and the endwall of the enlarged first nozzle of the E3 turbine was measured using pressure sensitive paint (PSP) techniques. The experimental results indicate that the film cooling effectiveness of a circular hole improved by increasing the angle θ of two impinging jets inside the cavity, which are used both for cooling the internal wall and generating a swirling motion in the film coolant. In contrast, it was found that there exist optimal jet angles of θ = 20° for a circular film cooling hole, θ = 5–10° for a flat plate wind tunnel test, and θ = 15° for the cascade test conducted using a fan-shaped film cooling hole. Thus the new film cooling method using swirling cooling air has been demonstrated to maintain high film cooling effectiveness even under such a complicated flow field.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3573
Author(s):  
Soo-In Lee ◽  
Jin-Young Jung ◽  
Yu-Jin Song ◽  
Jae-Su Kwak

In this study, the effect of mainstream velocity on the optimization of a fan-shaped hole on a flat plate was experimentally investigated. The experiment was conducted by changing the forward expansion angle (βfwd), lateral expansion angle (βlat), and metering length ratio (Lm/D) of the film-cooling hole. A total of 13 cases extracted using the Box–Behnken method were considered to examine the effect of the shape parameters of the film-cooling hole under a 90 m/s mainstream velocity condition, and the results were compared with the results derived under a mainstream velocity of 20 m/s. One density ratio (DR = 2.0) and a blowing ratio (M) ranging from 1.0 to 2.5 were considered, and the pressure-sensitive paint (PSP) technique was applied for the film-cooling effectiveness (FCE). As a result of the experiment, the optimized hole showed a 49.3% improvement in the overall averaged FCE compared to the reference hole with DR = 2.0 and M = 2.0. As the blowing ratio increased, the hole exit area tended to increase, and this tendency was the same as that in the 20 m/s mainstream condition.


Author(s):  
Jong S. Liu ◽  
Malak F. Malak ◽  
Luis A. Tapia ◽  
Daniel C. Crites ◽  
Dhinagaran Ramachandran ◽  
...  

Gas Turbine Engines operate at temperatures higher than current material temperature limits. This necessitates cooling the metal through internal or external means and/ or protecting the metal with coatings that have higher material limits. Film cooling is one of the major technologies allowing today’s gas turbines to operate at extremely high turbine inlet temperatures, consequently higher power density, and extend the cooled components life. Film cooling is a technique where a coolant is blown over the surface exposed to hot gas and a film of low temperature gas is maintained that protects the metal surface from the hot gas. The application of effective film-cooling techniques provides the first and best line of defense for hot gas path surfaces against the onslaught of extreme heat fluxes, serving to directly reduce the incident convective heat flux on the surface. The effectiveness of film cooling methods depends on the blowing ratio, shape of the cooling holes, and geometrical parameters such as the area ratio and diffusion angle. Film cooling is performed almost exclusively through the use of discrete holes. The holes can be of round or other shaped. A detailed study of the literature shows that the fan shaped has higher effectiveness when compared to other shapes. In this study a number of cooling hole shapes are evaluated numerically using the Computational Fluid Dynamics (CFD) tool ANSYS-CFX-11.0 with the objective of improving cooling effectiveness under a favorable pressure gradient main flow. In order to delineate the effects of shape from that of diffusion, a constant area ratio is assumed first. In the next set of analyses the effect of hole exit diffusion is considered. Results are presented in terms of surface temperatures and adiabatic effectiveness at three different blowing ratios for the different film cooling hole shapes analyzed. Comparison is made with reference to the fan shaped film cooling hole with forward and lateral angles of 10/10/10 degree respectively. Hole shapes that show improvement over the fan shaped hole are identified and optimized.


Author(s):  
Nian Wang ◽  
Mingjie Zhang ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

This study investigates the combined effects of blowing ratio and density ratio on flat plate film cooling effectiveness from two-row of compound angled cylindrical holes. Two arrangements of two-row compound angled cylindrical holes are tested: the first row and second row are oriented in staggered but same compound angled direction (β = +45° for the first row, +45° for the second row); the first row and second row are oriented in inline but opposite direction (β = +45° for the first row, −45° for the second row). Each cooling hole is 4 mm in diameter with an inclined angle 30°. The streamwise distance between the two rows is fixed at 4d and the spanwise pitch between the two holes (p) is 4d, 6d, and 8d, respectively. The experiments are performed at four blowing ratios (M = 0.5, 1.0, 1.5, 2.0) and three density ratios (DR = 1.0, 1.5, 2.0). The free stream turbulence intensity is kept at 6%. Detailed film cooling effectiveness distributions are obtained using the steady state pressure-sensitive paint (PSP) technique. The detailed film cooling effectiveness contours are presented and the spanwise averaged film effectiveness results are compared over the range of flow parameters. Film cooling effectiveness correlations are developed for both inline and staggered compound angled cylindrical holes. The results provide baseline information for the flat plate film cooling analysis with two-row of compound angled cylindrical holes.


2005 ◽  
Vol 127 (4) ◽  
pp. 718-725 ◽  
Author(s):  
Michael Gritsch ◽  
Will Colban ◽  
Heinz Schär ◽  
Klaus Döbbeling

This study evaluates the impact of typical cooling hole shape variations on the thermal performance of fan-shaped film holes. A comprehensive set of experimental test cases featuring 16 different film-cooling configurations with different hole shapes have been investigated. The shape variations investigated include hole inlet-to-outlet area ratio, hole coverage ratio, hole pitch ratio, hole length, and hole orientation (compound) angle. Flow conditions applied cover a wide range of film blowing ratios M=0.5 to 2.5 at an engine-representative density ratio DR=1.7. An infrared thermography data acquisition system is used for highly accurate and spatially resolved surface temperature mappings. Accurate local temperature data are achieved by an in situ calibration procedure with the help of thermocouples embedded in the test plate. Detailed film-cooling effectiveness distributions and discharge coefficients are used for evaluating the thermal performance of a row of fan-shaped film holes. An extensive variation of the main geometrical parameters describing a fan-shaped film-cooling hole is done to cover a wide range of typical film-cooling applications in current gas turbine engines. Within the range investigated, laterally averaged film-cooling effectiveness was found to show only limited sensitivity from variations of the hole geometry parameters. This offers the potential to tailor the hole geometry according to needs beyond pure cooling performance, e.g., manufacturing facilitations.


Author(s):  
Santosh Abraham ◽  
Alexander Ritchie Navin ◽  
Srinath V. Ekkad

Film cooling effectiveness depends on several geometrical parameters like location on the airfoil, exit shape, orientation and arrangement of the holes. The focus of this investigation is to propose and explore a new film cooling hole geometry. The adiabatic film cooling effectiveness is determined experimentally, downstream of the exit of the film cooling holes on a flat plate using a steady state IR thermography technique. Coolant holes that are perpendicular to the direction of flow detach from the surface and enhance the heat transfer coefficient on the turbine blade without providing any coolant coverage, while angled holes along the mainstream direction result in superior film cooling effectiveness and lower heat transfer to the surface. The objective of this study is to examine the external cooling effects using coolant holes that are a combination of both angled shaped holes as well as perpendicular holes. The inlet of the coolant hole is kept perpendicular to the direction of flow to enhance the internal side heat transfer coefficient and the exit of the coolant hole is expanded and angled along the mainstream flow to prevent the coolant jet from lifting off from the blade external surface. A total of six different cases with variations in exit shape geometry are investigated at different blowing ratios (BR varying from 0.5 to 2.0). Results suggest that the film cooling effectiveness values obtained from these geometries are comparable with those of conventional angled holes. With the added advantage of enhanced heat transfer coefficient on the coolant channel internal side, as proven earlier by Byerley [3], overall superior cooling is accomplished. Furthermore this shaped hole can be made using the same technology being presently used in the industry.


Sign in / Sign up

Export Citation Format

Share Document