CFD Modeling Effects on Unsteady Multistage Simulation for a Transonic Axial Compressor

Author(s):  
Mai Yamagami ◽  
Hidekazu Kodama ◽  
Dai Kato ◽  
Naoki Tsuchiya ◽  
Yasuo Horiguchi ◽  
...  

Unsteady three-dimensional multistage calculations are performed for a highly loaded, high-speed axial compressor to investigate the impact of real geometry modeling and different numerical approaches on the accuracy of the performance prediction. First, two features of the real geometries are separately compared with the calculation which consists of a pure flow path model except that rotor tip clearances are considered. One treats leakage generated by part gaps between variable stator vanes and the annulus lines. Another incorporates seal cavities to model leakage underneath the shrouded stators. Then, the influence of different numerical approach with different turbulence models is also investigated. Discussion on the impact of the CFD modeling on the performance prediction focuses on the prediction accuracies of stage operating points and spanwise mixing. It is suggested that a realistic simulation of turbulent-type flow unsteadiness in a multistage machine is important for an accurate prediction of spanwise mixing phenomena.

Author(s):  
E Swain

A one-dimensional centrifugal compressor performance prediction technique that has been available for some time is updated as a result of extracting the component performance from three-dimensional computational fluid dynamic (CFD) analyses. Confidence in the CFD results is provided by comparison of overall performance for one of the compressor examples. The extracted impeller characteristic is compared with the original impeller loss model, and this indicated that some improvement was desirable. The position of least impeller loss was determined using a traditional axial compressor cascade method, and suitable algebraic expressions were derived to match the CFD data. The merit of the approach lies with the relative ease that CFD component performance currently can be achieved and adjusting one-dimensional methods to agree with the CFD-derived models.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
D. Roubinet ◽  
S. Demirel ◽  
E. B. Voytek ◽  
X. Wang ◽  
J. Irving

Modeling fluid flow in three-dimensional fracture networks is required in a wide variety of applications related to fractured rocks. Numerical approaches developed for this purpose rely on either simplified representations of the physics of the considered problem using mesh-free methods at the fracture scale or complex meshing of the studied systems resulting in considerable computational costs. Here, we derive an alternative approach that does not rely on a full meshing of the fracture network yet maintains an accurate representation of the modeled physical processes. This is done by considering simplified fracture networks in which the fractures are represented as rectangles that are divided into rectangular subfractures such that the fracture intersections are defined on the borders of these subfractures. Two-dimensional analytical solutions for the Darcy-scale flow problem are utilized at the subfracture scale and coupled at the fracture-network scale through discretization nodes located on the subfracture borders. We investigate the impact of parameters related to the location and number of the discretization nodes on the results obtained, and we compare our results with those calculated using reference solutions, which are an analytical solution for simple configurations and a standard finite-element modeling approach for complex configurations. This work represents a first step towards the development of 3D hybrid analytical and numerical approaches where the impact of the surrounding matrix will be eventually considered.


2018 ◽  
Vol 41 (4) ◽  
pp. 990-1001
Author(s):  
Song Ma ◽  
Jianguo Tan ◽  
Xiankai Li ◽  
Jiang Hao

This paper establishes a novel mathematical model for computing the plume flow field of a carrier-based aircraft engine. Its objective is to study the impact of jet exhaust gases with high temperature, high speed and high pressure on the jet blast deflector. The working condition of the nozzle of a fully powered on engine is first determined. The flow field of the exhaust jet is then numerically simulated at different deflection angle using the three-dimensional Reynolds averaged Navier–Stokes equations and the standard [Formula: see text]-[Formula: see text] turbulence method. Moreover, infra-red temperature tests are further carried out to test the temperature field when the jet blast deflector is at the [Formula: see text] deflection angle. The comparison between the simulation results and the experimental results show that the proposed computation model can perfectly describe the system. There is only 8–10% variation between them. A good verification is achieved. Moreover, the experimental results show that the jet blast deflector plays an outstanding role in driving the high-temperature exhaust gases. It is found that [Formula: see text] may be the best deflection angle to protect the deck and the surrounding equipment effectively. These data results provide a valuable basis for the design and layout optimization of the jet blast deflector and deck.


Author(s):  
June Chung ◽  
Jeonghwan Shim ◽  
Ki D. Lee

A three-dimensional (3D) CFD-based design method for high-speed axial compressor blades is being developed based on the discrete adjoint method. An adjoint code is built corresponding to RVC3D, a 3D turbomachinery Navier-Stokes analysis code developed at NASA Glenn. A validation study with the Euler equations indicates that the adjoint sensitivities are sensitive to the choice of boundary conditions for the adjoint variables in internal flow problems and constraints may be needed on internal boundaries to capture proper physics of the adjoint system. The design method is demonstrated with inverse design based on Euler physics, and the results indicate that the adjoint design method produces efficient 3D designs by drastically reducing the computational cost.


2011 ◽  
Vol 56 (4) ◽  
pp. 1-12 ◽  
Author(s):  
K. Richter ◽  
A. Le Pape ◽  
T. Knopp ◽  
M. Costes ◽  
V. Gleize ◽  
...  

A joint comprehensive validation activity on the structured numerical method elsA and the hybrid numerical method TAU was conducted with respect to dynamic stall applications. To improve two-dimensional prediction, the influence of several factors on the dynamic stall prediction was investigated. The validation was performed for three deep dynamic stall test cases of the rotor blade airfoil OA209 against experimental data from two-dimensional pitching airfoil experiments, covering low-speed and high-speed conditions. The requirements for spatial discretization and for temporal resolution in elsA and TAU are shown. The impact of turbulence modeling is discussed for a variety of turbulence models ranging from one-equation Spalart–Allmaras-type models to state-of-the-art, seven-equation Reynolds stress models. The influence of the prediction of laminar/turbulent boundary layer transition on the numerical dynamic stall simulation is described. Results of both numerical methods are compared to allow conclusions to be drawn with respect to an improved prediction of dynamic stall.


1998 ◽  
Vol 120 (3) ◽  
pp. 393-401 ◽  
Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms in a low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short length-scale disturbance known as a “spike,” and the second with a longer length-scale disturbance known as a “modal oscillation.” In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented that relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: Long length-scale disturbances are related to a two-dimensional instability of the whole compression system, while short length-scale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed that explains the type of stall inception pattern observed in a particular compressor. Measurements from a single-stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.


2013 ◽  
Vol 315 ◽  
pp. 1-5 ◽  
Author(s):  
Perowansa Paruka ◽  
Waluyo Adi Siswanto

One of the important objectives in this research is investigating the behavior on the cylindrical tube structure via computer simulations. When a thin cylindrical structure is experienced an impact loading, the crushing process on impact can only be observed by a high speed camera. Recording the stress and strain data is also not possible experimentally. A numerical approach implementing finite element method with a dynamic-explicit code is an effective solution to observe the crushing process. A thin cylindrical structure found in aluminium can is modeled. A finite element impact simulation is then performed to observe the crushing process sequence and the stress and strain development history on axial impact employing IMPACT application program. An experimental of thin cylindrical structure on axial impact is conducted. The final crushing pattern after the impact is then compared with that from simulation. The result shows that final crushing pattern is in a good agreement with that shown in experiment. The stress and strain histories can be observed from the simulation.


Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms a in low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short lengthscale disturbance known as a ‘spike’, and the second with a longer lengthscale disturbance known as a ‘modal oscillation’. In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented which relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: long lengthscale disturbances are related to a two-dimensional instability of the whole compression system, while short lengthscale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed which explains the type of stall inception pattern observed in a particular compressor. Measurements from a single stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.


2006 ◽  
Vol 129 (3) ◽  
pp. 730-737 ◽  
Author(s):  
Manuj Dhingra ◽  
Yedidia Neumeier ◽  
J. V. R. Prasad ◽  
Andrew Breeze-Stringfellow ◽  
Hyoun-Woo Shin ◽  
...  

A stability measure rooted in the unsteady characteristics of the flow field over the compressor rotor has been previously developed. The present work explores the relationship between the stochastic properties of this measure, called the correlation measure, and the compressor stability boundary. A stochastic model has been developed to gauge the impact of the correlation measure’s stochastic nature on its applicability to compressor stability management. The genesis of this model is in the fundamental properties of a specific stochastic process, one that is created by the threshold crossings of a random process. The model validation utilizes data obtained on three different axial compressor facilities. These include a single-stage low-speed axial compressor, a four-stage low-speed research compressor, and an advanced technology demonstrator high-speed compressor. This paper presents details of the model development and validation, as well as closed loop experimental results to demonstrate correlation measure’s usefulness in compressor stability management.


Author(s):  
Simon Coldrick ◽  
Paul Ivey ◽  
Roger Wells

This paper describes preparatory work towards three dimensional flowfield measurements downstream of the rotor in an industrial, multistage, axial compressor, using a pneumatic pressure probe. The probe is of the steady state four hole cobra probe type. The design manufacture and calibration of the probe is described. CFD calculations have been undertaken in order to assess the feasability of using such a probe in the high speed compressor environment where space is limited. This includes effects of mounting the probe in close proximity to the downstream stator blades and whether it is necessary to adjust the calibration data to compensate for these effects.


Sign in / Sign up

Export Citation Format

Share Document