Aerodynamic Redesigning of an Industrial Gas Turbine

Author(s):  
Filippo Rubechini ◽  
Andrea Schneider ◽  
Andrea Arnone ◽  
Federico Dacca` ◽  
Claudio Canelli ◽  
...  

This paper deals with the aerodynamic redesigning of a four-stage heavy-duty gas turbine. Traditional design tools, such as through-flow methods, as well as more sophisticated tools, such as three-dimensional RANS computations, were applied in subsequent steps according to a given hierarchical criterion. Each design or analysis tool was coupled with modern optimization techniques, and the overall redesign procedure relies on a neural-network-based approach aimed at maximizing the turbine’s power output while satisfying geometrical and mechanical constraints. A detailed description of the redesign procedure is provided, and the aerodynamic characteristics of the optimized geometry are discussed and compared to the original ones.

Author(s):  
Andrea Arnone ◽  
Erio Benvenuti

A three-dimensional Navier-Stokes solver has been extended to include multi-row capability. The coupling between the various rows is implemented by means of mixing planes. Those planes are handled by retaining the radial distortions while mass-averaging in the pitch-wise direction. The code is applied to a two-stage, heavy-duty gas turbine at design conditions. A comparison of pitch-averaged quantities between blade rows with preliminary measurements and with through flow analysis is presented along with a discussion of the flow features in terms of secondary flows. Using roughly half a million grid points, an operating condition can be examined in about an hour on a modem supercomputer.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Nian-kun Ji ◽  
Shu-ying Li ◽  
Zhi-tao Wang ◽  
Ning-bo Zhao

The intercooled gas turbine obtained by adopting an indirect heat exchanger into an existing gas turbine is one of the candidates for developing high-power marine power units. To simplify such a strong coupled nonlinear system reasonably, the feasibility and availability of qualifying equivalent effectiveness as the only parameter to evaluate the intercooler behavior are investigated. Regarding equivalent effectiveness as an additional degree of freedom, the steady state model of a marine intercooled gas turbine is developed and its off-design performance is analyzed. With comprehensive considerations given to various phase missions of ships, operational flexibility, mechanical constraints, and thermal constraints, the operating curve of the intercooled gas turbine is optimized based on graphical method in three-dimensional performance space. The resulting operating curve revealed that the control strategy at the steady state conditions for the intercooled gas turbine should be variable cycle control. The necessity of integration optimization design for gas turbine and intercooler is indicated and the modeling and analysis method developed in this paper should be beneficial to it.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Filippo Rubechini ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Massimiliano Maritano ◽  
Stefano Cecchi

In this work a numerical investigation of a four stage heavy-duty gas turbine is presented. Fully three-dimensional, multistage, Navier-Stokes analyses are carried out to predict the overall turbine performance. Coolant injections, cavity purge flows, and leakage flows are included in the turbine modeling by means of suitable wall boundary conditions. The main objective is the evaluation of the impact of gas modeling on the prediction of the stage and turbine performance parameters. To this end, four different gas models were used: three models are based on the perfect gas assumption with different values of constant cp, and the fourth is a real gas model which accounts for thermodynamic gas properties variations with temperature and mean fuel∕air ratio distribution in the through-flow direction. For the real gas computations, a numerical model is used which is based on the use of gas property tables, and exploits a local fitting of gas data to compute thermodynamic properties. Experimental measurements are available for comparison purposes in terms of static pressure values at the inlet∕outlet of each row and total temperature at the turbine exit.


Author(s):  
Mohammad R. Saadatmand

The aerodynamic design process leading to the production configuration of a 14 stage, 16:1 pressure ratio compressor for the Taurus 70 gas turbine is described. The performance of the compressor is measured and compared to the design intent. Overall compressor performance at the design condition was found to be close to design intent. Flow profiles measured by vane mounted instrumentation are presented and discussed. The flow through the first rotor blade has been modeled at different operating conditions using the Dawes (1987) three-dimensional viscous code and the results are compared to the experimental data. The CFD prediction agreed well with the experimental data across the blade span, including the pile up of the boundary layer on the corner of the hub and the suction surface. The rotor blade was also analyzed with different grid refinement and the results were compared with the test data.


Author(s):  
Dadong Zhou ◽  
Ting Wang ◽  
William R. Ryan

In the first part of a multipart project to analyze and optimize the complex three-dimensional diffuser-combustor section of a highly advanced industrial gas turbine under development, a computational fluid dynamics (CFD) analysts has been conducted. The commercial FEA code I-DEAS was used to complete the three-dimensional solid modeling and the structured grid generation. The flow calculation was conducted using the commercial CFD code PHOENICS. The multiblock method was employed to enhance computational capabilities. The mechanisms of the total pressure losses and possible ways to enhance efficiency by reducing the total pressure losses were examined. Mechanisms that contribute to the nonuniform velocity distribution of flow entering the combustor were also identified. The CFD results were informative and provided insight to the complex flow patterns in the reverse flow dump diffuser, however, the results are qualitative and are useful primarily as guidelines for optimization as opposed to firm design configuration selections.


Author(s):  
Martin von Hoyningen-Huene ◽  
Wolfram Frank ◽  
Alexander R. Jung

Unsteady stator-rotor interaction in gas turbines has been investigated experimentally and numerically for some years now. Most investigations determine the pressure fluctuations in the flow field as well as on the blades. So far, little attention has been paid to a detailed analysis of the blade pressure fluctuations. For further progress in turbine design, however, it is mandatory to better understand the underlying mechanisms. Therefore, computed space–time maps of static pressure are presented on both the stator vanes and the rotor blades for two test cases, viz the first and the last turbine stage of a modern heavy duty gas turbine. These pressure fluctuation charts are used to explain the interaction of potential interaction, wake-blade interaction, deterministic pressure fluctuations, and acoustic waveswith the instantaneous surface pressure on vanes and blades. Part I of this two-part paper refers to the same computations, focusing on the unsteady secondary now field in these stages. The investigations have been performed with the flow solver ITSM3D which allows for efficient simulations that simulate the real blade count ratio. Accounting for the true blade count ratio is essential to obtain the correct frequencies and amplitudes of the fluctuations.


Author(s):  
Arne Loft

This paper gives a brief summary of the experience of the first industrial gas turbine ship, the John Sergeant, then enumerates the basic characteristics of the heavy duty gas turbine and the philosophy employed in the design. The unique features of the second-stage variable area turbine nozzle, its effects on performance, and particularly the flexible control it affords in conjunction with the controllable and reversible pitch propeller, are discussed. The philosophy of design of the solid state control, protection and sequential systems are outlined, as are the experiences to date with a number of industrial gas turbines of the two-shaft, off-shore and heavy fuel varieties. It concludes by discussing some of the considerations for burning residual fuel and boil-off from liquefied natural gas.


2005 ◽  
Vol 20 (3) ◽  
pp. 184-191 ◽  
Author(s):  
Abdullah E. Akay ◽  
John Sessions

Abstract A three-dimensional forest road alignment model, TRACER, was developed to assist a forest road designer with rapid evaluation of alternative road paths. The objective is to design a route with the lowest total cost considering construction, maintenance, and transportation costs, while conforming to design specifications, environmental requirements, and driver safety. The model integrates two optimization techniques: a linear programming for earthwork allocation and a heuristic approach for vertical alignment selection. The model enhances user efficiency through automated horizontal and vertical curve fitting routines, cross-section generation, and cost routines for construction, maintenance, and vehicle use. The average sediment delivered to a stream from the road section is estimated using the method of a GIS-based road erosion/delivery model. It is anticipated that the development of a design procedure incorporating modern graphics capability, hardware, software languages, modern optimization techniques, and environmental considerations will improve the design process for forest roads. West. J. Appl. For. 20(3):184–191.


Author(s):  
Friederike C. Mund ◽  
Pericles Pilidis

An important loss in an industrial gas turbine is caused by the intake system. Even though these losses have a direct effect on the performance of the engine, the design of the intake system is dominated by local space restriction. Consequently, intake losses are site specific parameters. They correlate with the airflow velocity and therefore operating conditions of the engine affect the intake performance. But due to the high experimental effort necessary to investigate intake losses, only sparse information about this effect is available. For the present study a typical vertical industrial intake duct was investigated numerically for different operating scenarios. The performance simulation of a single shaft heavy duty gas turbine provided boundary conditions for the CFD (Computational Fluid Dynamics) study of the intake duct. For all operating conditions a large scale vortex developed in the intake plenum and entered the compressor. Bearing support struts caused local flow distortion at the compressor inlet. Even for extreme operating scenarios the relative changes of pressure recovery compared to the design point value were small (0.1%). However, the resulting power change was generally in excess of the intake loss deviation. Applied to a heavy duty gas turbine, the maximum deviation of 0.2% of power was equivalent to about 0.4 MW. In most cases lower pressure losses were predicted which benefited the overall engine performance. For the cold scenario the intake performance deteriorated and resulted in a relative reduction of power of nearly 0.5 MW.


Sign in / Sign up

Export Citation Format

Share Document