Flame Stabilization by Hot Products Gases Recirculation in a Trapped Vortex Combustor

Author(s):  
Joseph Burguburu ◽  
Gilles Cabot ◽  
Bruno Renou ◽  
Abdelkrim Mourad Boukhalfa ◽  
Michel Cazalens

New regulations regarding NOx emissions are forcing manufacturers to develop advanced research and technology strategies. Ultra-lean combustion is considered as an attractive solution; however, it generally produces combustion instabilities in swirl-stabilized burners. This work provides experimental results for a new burner technology based on two concepts: the trapped vortex combustor (TVC) and the ultra-compact combustor (UCC). Methane/air flame stabilization was achieved by generating hot product recirculation, with a rich pilot flame located in an annular cavity, and by flame holders located in the main flow slightly upstream of the cavity. In addition, azimuthal gyration could be added to the main flow to reproduce the suppression of the last diffuser stage, which increased the velocity and modified the mixing between the cavity and the mainstream due to centrifugal forces. The combustor characterization was performed by coupling several optical diagnostics, pollutant emissions, and pressure measurements (for both cold and reactive conditions) at atmospheric pressure. An understanding of the combustion dynamics was achieved through phase averaged PIV/CH* images. The analysis highlighted the importance of the stabilization process of a double vortex structure inside the cavity and the presence of reactive gas close to the upstream cavity wall. These conditions were improved by a high cavity equivalence ratio and a high main airflow rate. The addition of swirl considerably increased the flame stability.

Author(s):  
Pradip Xavier ◽  
Mickael Pires ◽  
Alexis Vandel ◽  
Bruno Renou ◽  
Gilles Cabot ◽  
...  

Development of lean premixed (LP) combustion is still a challenge as it results in considerable constraints for the combustor design. Indeed, new combustors using LP combustion are more prone to flashback, blow-off, or even thermo-acoustic instabilities. A detailed understanding of mechanisms leading to such extreme conditions is then crucial to reduce pollutant emissions, widen the range of operating conditions, and reduce design time. This paper reports the experimental study of an innovative LP trapped vortex combustor (TVC). The TVC concept uses a recirculating rich flow trapped in a cavity to create a stable flame that continuously ignites a main lean mixture passing above the cavity. This concept gave promising performances but some workers highlighted the existence of combustion instabilities for some operating conditions. Detailed studies have therefore been carried out in order to understand the occurrence of these drastic operating conditions. Results showed that the cavity flow dynamics in conjunction with the location of the interfacial mixing zone (between the cavity and the mainstream) were the driving forces to obtain stable combustion regimes. The goal of this work has been to take advantage of these detailed recommendations to determine stability maps, trends, and dimensionless parameters which could be easily used as early-design rules. For this reason, the study introduced a simple and robust criterion, based on the global pressure fluctuation energy. The latter was used to distinguish stable and unstable modes. An aerodynamic momentum flux ratio and a chemical stratification ratio (taken between the cavity and the mainstream) were defined to scale all measurements. Results indicated that the mainstream velocity was critically important to confine the cavity and to prevent combustion instabilities. Remarkably, this trend was verified and even more pronounced for larger cavity powers. In addition, flame stabilization above the cavity resulted in the existence of specific stratification ratios, in order to obtain a soft gradient of gas composition between the rich and lean regions. Finally, a linear relation between the mainstream and cavity velocities became apparent, thereby making possible to simply predict the combustor stability.


2001 ◽  
Vol 7 (6) ◽  
pp. 375-385 ◽  
Author(s):  
R. C. Hendricks ◽  
D. T. Shouse ◽  
W. M. Roquemore ◽  
D. L. Burrus ◽  
B. S. Duncan ◽  
...  

The Trapped Vortex Combustor (TVC) potentially offers numerous operational advantages over current production gas turbine engine combustors. These include lower weight, lower pollutant emissions, effective flame stabilization, high combustion efficiency, excellent high altitude relight capability, and operation in the lean burn or RQL modes of combustion. The present work describes the operational principles of the TVC, and extends diffuser velocities toward choked flow and provides system performance data. Performance data include EINOx results for various fuel-air ratios and combustor residence times, combustion efficiency as a function of combustor residence time, and combustor lean blow-out (LBO) performance. Computational fluid dynamics (CFD) simulations using liquid spray droplet evaporation and combustion modeling are performed and related to flow structures observed in photographs of the combustor. The CFD results are used to understand the aerodynamics and combustion features under different fueling conditions. Performance data acquired to date are favorable compared to conventional gas turbine combustors. Further testing over a wider range of fuel-air ratios, fuel flow splits, and pressure ratios is in progress to explore the TVC performance. In addition, alternate configurations for the upstream pressure feed, including bi-pass diffusion schemes, as well as variations on the fuel injection patterns, are currently in test and evaluation phases.


Author(s):  
Pradip Xavier ◽  
Alexis Vandel ◽  
Gilles Godard ◽  
Bruno Renou ◽  
Frederic Grisch ◽  
...  

Operating with lean combustion has led to more efficient “Low-NOx” burners but has also brought several technological issues. The burner design geometry is among the most important element as it controls, in a general way, the whole combustion process, the pollutant emissions and the flame stability. Investigation of new geometry concepts associating lean combustion is still under development, and new solutions have to meet the future pollutant regulations. This paper reports the experimental investigation of an innovative staged lean premixed burner. The retained annular geometry follows the Trapped Vortex Combustor concept (TVC) which operates with a two stage combustion chamber: a main lean flame (1) is stabilized by passing past a vortex shape rich-pilot flame (2) located within a cavity. This concept, presented in GT2012-68451 and GT2013-94704, seems to be promising but exhibits combustion instabilities in certain cases, then leading to undesirable level of pollutant emissions and could possibly conduct to serious material damages. No precise information have been reported in the literature about the chain of reasons leading to such an operation. The aim of this paper is to have insights about the main parameters controlling the combustion in this geometry. The flame structure dynamics is examined and compared for two specific operating conditions, producing an acoustically self-excited and a stable burner. Low and high-speed OH-PLIF laser diagnostics (up to 10 kHz) are used to have access to the flame curvature and to time-resolved events. Results show that the cavity jets location can lead to flow-field oscillations and a non-constant flame’s heat release. The associated flame structure, naturally influenced by turbulence is also affected by hot gases thermal expansion. Achieving a good and rapid mixing at the interface between the cavity and the main channel leads to a stable flame.


Author(s):  
Nikhil Ashokbhai Baraiya ◽  
Vikram Ramanan ◽  
Baladandayuthapani Nagarajan ◽  
Chetankumar S Vegad ◽  
S. R. Chakravarthy

Abstract A bluff-body turbulent combustor is mapped for its thermo-acoustic stability across variation in airflow rate, non-dimensionalized as the Reynolds number (Re) and fuel composition. The combustor stability is evaluated for three fuels, namely, pure hydrogen (PH), synthesis natural gas (SNG), and syngas (SG). The combustion dynamics display markedly different behavior across the fuels, in the extent of the unstable region, as well as the observed dominant Eigenvalues. At low Re, SNG displays stable combustion, while SG exhibits high amplitude oscillations at the fundamental duct acoustic mode. As the Re is increased, SNG displays very high amplitude oscillations at the duct acoustic mode, while SG exhibit relatively low amplitude oscillations at the third harmonic. In the case of PH, high amplitude oscillations observed at higher Re at the first harmonic. These peculiarities are investigated in light of the role of mean flame stabilization. The combustion dynamics of fuels is influenced by the global equivalence ratio, as well as the jet momentum ratio. These effects significantly demarcates the dynamics of SNG and SG combustion. This is seen manifested in mean flame structure of flame at high amplitude oscillations, whereby result in SNG flame to be present in the wake, while the SG flame resides in the shear layer. The driving by the flame because of their mean stabilization quantified by a spatial Rayleigh index. It confirms the presence of large driving regions for SNG compared to that of SG, results in the observed differences in amplitude of the oscillations.


2021 ◽  
Author(s):  
Nisanth M S ◽  
Pratikash P. Panda ◽  
Ravikrishna R V

Abstract Well-stabilized vortices inside a physical cavity using direct injection of reactants can be used to provide stable combustion with performance benefits. The adaptation of the Trapped Vortex Combustion (TVC) concept involves the placement of the cavity-based flame stabilization device in the main duct of the combustor using annular or planar geometric configurations. In this work, we compare the performance of inner annular, outer annular and planar arrangements of the cavity with dual-vortex structure configuration enabled by a single injection port on the upstream wall of the cavity. The comparison is done using Reynolds Averaged Navier-Stokes (RANS) simulations. The effect of cavity implementation methods on the flame stabilization, temperature distribution at the exit of the combustor and pollutant emissions are analyzed with three combustor operating conditions based on the flow parameters. Significant differences in the flame stabilization are observed in the combustors due to the dissimilarity of the velocity and fuel distribution. The parameter, jet momentum flux ratio, denoted by J, is defined based on the inlet conditions and the estimate of actual cavity flow velocity from numerical results. This parameter is used to correlate the combustor performance among the various configurations studied. The inner annular combustor can be scaled to higher power by increasing the combustor radius (R) with same cavity size, flow parameters and chemical parameters, however, the flame stabilization and performance are affected by the geometric parameters, combustor radius (R) and cavity depth (D). Strategies to scale-up the combustor to obtain the required performance are discussed along with the challenges faced in comparing results of the various configurations studied.


Author(s):  
Pradip Xavier ◽  
Bruno Renou ◽  
Gilles Cabot ◽  
Mourad A. Boukhalfa ◽  
Michel Cazalens

This paper focuses on optimizing an innovative annular Lean Premixed staged burner, following the Trapped Vortex Combustor concept. The latter consists of a lean main flame stabilized by passing past a rich cavity pilot flame. Unfortunately, this configuration is highly sensitive to combustion instabilities and the flame is not well stabilized. This work consists of adjusting aerodynamic variables, chemical parameters and burner geometry to reach a “low-NOx” operation while reducing other pollutants and getting a stable flame. Results show that stability is reached when mass transfers between main and cavity zones are reduced. Then, the main bulk velocity is increased to reduce the cavity thermal expansion, due to the hot gas expansion. In addition, the cavity flow rate is reduced to prevent from penetrating and disturbing the main flow. Re-arranging injections in the cavity also avoid local unsteady equivalence ratios, which creates an unsteady heat release and combustion with pulses. Regarding NOx, a leaner main flame combined with a sufficiently rich cavity mixture creates local stoichiometric zones at the interface between the cavity and the main zone. The latter point is found to be a good anchoring mechanism. Compared with the original configuration, a stable point of operation is found: acoustic energy is reduced by an order of 100, NOx level is less than 0.4 g/kgfuel, CO is cut by 93% with no more Unburned Hydro-Carbons.


Author(s):  
Rajiv Mongia ◽  
Robert Dibble ◽  
Jeff Lovett

Lean premixed combustion has emerged as a method of achieving low pollutant emissions from gas turbines. A common problem of lean premixed combustion is combustion instability. As conditions inside lean premixed combustors approach the lean flammability limit, large pressure variations are encountered. As a consequence, certain desirable gas turbine operating regimes are not approachable. In minimizing these regimes, combustor designers must rely upon trial and error because combustion instabilities are not well understood (and thus difficult to model). When they occur, pressure oscillations in the combustor can induce fluctuations in fuel mole fraction that can augment the pressure oscillations (undesirable) or dampen the pressure oscillations (desirable). In this paper, we demonstrate a method for measuring the fuel mole fraction oscillations which occur in the premixing section during combustion instabilities produced in the combustor that is downstream of the premixer. The fuel mole fraction in the premixer is measured with kHz resolution by the absorption of light from a 3.39 μm He-Ne laser. A sudden expansion combustor is constructed to demonstrate this fuel mole fraction measurement technique. Under several operating conditions, we measure significant fuel mole fraction fluctuations that are caused by pressure oscillations in the combustion chamber. Since the fuel mole fraction is sampled continuously, a power spectrum is easily generated. The fuel mole fraction power spectrum clearly indicates fuel mole fraction fluctuation frequencies are the same as the pressure fluctuation frequencies under some operating conditions.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2372 ◽  
Author(s):  
Julio San José ◽  
Yolanda Arroyo ◽  
María Ascensión Sanz-Tejedor

This article studies the combustion of refined sunflower, virgin sunflower and virgin rapeseed oils in a low-pressure auxiliary air fluid pulverization burner in order to establish the optimal operating conditions. The influence of varying the type of vegetable oil, fuel flow rate and secondary airflow rate in the combustion process was analyzed. These three factors are independent in the combustion process, which means having to carry out numerous assays, combining the various factors with one another. Given the amount of variables to be optimized and the existence of three factors, a statistical approach is adopted to help interpret the results obtained and to evaluate how each factor influences the combustion results. Optimal combustion is determined based on three criteria, minimum pollutant emissions (CO, NOx and CxHy), maximum combustion performance, and minimum excess air. The result of this study showed that airflow was the principal factor affecting emissions, whereas for combustion performance, both factors (airflow and fuel flow) were determinant. In general, admissible combustion performances were obtained, with CO and NOx emissions below permitted levels. The best combustion performance was achieved under conditions of maximum fuel flow and minimum airflow rates.


Author(s):  
Youichlrou Ohkubo ◽  
Yoshinorl Idota ◽  
Yoshihiro Nomura

Spray characteristics of liquid fuel air-assisted atomizers developed for a lean premixed-prevaporization combustor were evaluated under two kinds of conditions: in still air under non-evaporation conditions at atmospheric pressure and in a prevaporization-premixing tube under evaporation conditions with a running gas turbine. The non-evaporated mass fraction of fuel spray was measured using a phase Doppler particle analyzer in the prevaporization-premixing tube, in which the inlet temperature ranged from 873K to 1173K. The evaporation of the fuel spray in the tube is mainly controlled by its atomization and distribution. The NOx emission characteristics measured with a combustor test rig were evaluated with three-dimensional numerical simulations. A low non-evaporated mass fraction of less than 10% was effective in reducing the exhausted NOx from lean premixed-prevaporization combustion to about 1/6 times smaller than that from lean diffusion (spray) combustion. The flow patterns in the combustor are established by a swirl chamber in fuel-air preparation tube, and affect the flame stabilization of lean combustion.


Author(s):  
Lei Jiang ◽  
Gang Li ◽  
Xi Jiang ◽  
Hongbin Hu ◽  
Bo Xiao ◽  
...  

A lobed swirl injector was tested to examine its potential in combustion control for non-premixed and partially premixed flames. It was found in the experiment that the flame derived from the injector changed between attached and detached flames at different conditions, demonstrating a promising way to control combustion. When air is supplied through the external channel of the lobed swirl injector and fuel passes through the internal channel, a stable lifted flame that is partially premixed was established above the injector exit. With the increase of airflow rate, the flame lift-off height decreases gradually until it is reattached to the injector, forming a diffusion flame. When increasing the fuel flow rate, the lift-off height increases gradually until the flame is blown out. Flow fields of the partially premixed lifted flames were investigated using stereoscopic particle image velocimetry. Streamlines located in the near field of the injector exit do not expand but bend inward, which is quite different from the expansion motion at the exit of the traditional vane swirler. The trough structure on the lobed swirler leads to the outer air flowing inward. Although the crest structure should make the inside gas flow outward, the strong entrainment of the surrounding air would restrain the radial outward motion of the inner gas, thus causing a contracted motion. After the streamline develops to an axial position further away from the injector exit, the swirling jet begins to expand under effects of both the centrifugal force and the development of shear layer to form turbulence. This flow pattern affects both the flame stabilization position and the neighboring reaction zone structure significantly. The measurements also show that the lobed swirl injector is very capable of entraining the ambient air that is sucked into the mainstream from the downward direction.


Sign in / Sign up

Export Citation Format

Share Document