Tip Clearance Effects on Unsteady Behavior of the Tip Leakage Vortex and Stator/Rotor Interaction Tonal Noise

Author(s):  
Lei Zhao ◽  
Wei-Yang Qiao ◽  
Zhong-Qiang Mu ◽  
Ping-Ping Chen

In turbomachinery the tip leakage vortex is an obvious periodic phenomenon associated with rotor blade, its interaction with stator wake will affect the tonal noise level and aerodynamic performance. This study assesses the effects of tip leakage vortex on the stator/rotor interaction tonal noise and its unsteady behavior by 3D unsteady numerical simulations and the Triple-Plane Pressure matching strategy. The fluctuation of blade loading distribution and the interaction of wake negative jet with tip clearance flow change the structure and position of tip leakage vortex and scrapping vortex periodically. From the time-average results, the incoming wakes reduced the strength of vortices. The result also shows that the tonal noise level of turbine stage is decreased with the enlargement of tip clearance.

2013 ◽  
Vol 136 (4) ◽  
Author(s):  
William Riéra ◽  
Lionel Castillon ◽  
Julien Marty ◽  
Francis Leboeuf

In the present study, the influence of the inlet condition on the tip clearance flow of an axial compressor is investigated. Two different zonal detached eddy simulations (ZDES) computations are carried out and compared to Reynolds-averaged Navier–Stokes (RANS) and unsteady RANS (URANS) computations as well as to experimental data. A rotating distortion map of the flow cartography is set as inlet condition for the first ZDES computation. An azimuthally averaged inlet condition is used for the second one and uncouples the rotor tip-leakage vortex flutter phenomenon, which stems from the arrival of the inlet guide vane wake from the behavior inherent to the rotor tip-leakage vortex. In the studied configuration, the inlet guide vane tip vortex reveals to lower the effects from double leakage on the rotor. The topology of the rotor tip-leakage vortex is described, and its development is analyzed.


Author(s):  
K. Yamada ◽  
K. Funazaki ◽  
H. Sasaki

The purpose of this study is to have a better understanding of the unsteady behavior of tip clearance flow at near-stall condition from a multi-passage simulation and to clarify the relation between such unsteadiness and rotating disturbance. This study is motivated by the following concern. A single passage simulation has revealed the occurrence of the tip leakage vortex breakdown at near-stall condition in a transonic axial compressor rotor, leading to the unsteadiness of the tip clearance flow field in the rotor passage. These unsteady flow phenomena were similar to those in the rotating instability, which is classified in one of the rotating disturbances. In other words it is possible that the tip leakage vortex breakdown produces a rotating disturbance such as the rotating instability. Three-dimensional unsteady RANS calculation was conducted to simulate the rotating disturbance in a transonic axial compressor rotor (NASA Rotor 37). The four-passage simulation was performed so as to capture a short length scale disturbance like the rotating instability and the spike-type stall inception. The simulation demonstrated that the unsteadiness of tip leakage vortex, which was derived from the vortex breakdown at near-stall condition, invoked the rotating disturbance in the rotor, which is similar to the rotating instability.


Author(s):  
Donghyun You ◽  
Meng Wang ◽  
Parviz Moin ◽  
Rajat Mittal

The tip-clearance flow in axial turbomachines is studied using large-eddy simulation with particular emphasis on understanding the underlying mechanisms for viscous losses in the end-wall region and the unsteady characteristics of the tip-leakage vortical structures. Systematic and detailed analysis of the mean flow field and turbulence statistics has been made in a linear cascade with a moving end-wall. The tip-leakage jet and tip-leakage vortex are found to produce significant mean velocity gradients, leading to the production of vorticity and turbulent kinetic energy. These are the major causes for viscous losses in the cascade end-wall region. An analysis of the energy spectra and space-time correlations of the velocity fluctuations suggests that the tip-leakage vortex is subject to a pitchwise low frequency wandering motion.


Author(s):  
Kazutoyo Yamada ◽  
Yusuke Tamagawa ◽  
Hisataka Fukushima ◽  
Masato Furukawa ◽  
Seiichi Ibaraki ◽  
...  

Two types of transonic centrifugal compressor impeller with splitter blades, which are different in blade count, have been investigated in this study. RANS (Reynolds-Averaged Navier-Stokes) simulations were carried out for several operating conditions to clarify differences in aerodynamic performance characteristic and tip clearance flow field between the two compressors. The simulation shows that basically similar flow events happen in both compressors. A low velocity region is generated near the tip at low flow rate conditions, which results from an expansion of the tip leakage vortex. The low velocity region expands as the flow rate is decreased, and interacts with the pressure surface of the splitter blade near the leading edge. This causes a descent of the blade loading near the tip of the leading edge, and an accumulation of high entropy fluid near the casing-suction corner. Moreover, the tip clearance flow spills ahead of the leading edge of the splitter blade at near stall condition, and eventually the spillage happens at the full blade at stall condition. However, the major difference in solidity influences tip clearance flow/blade interaction, which leads to changes in the performance characteristics. In the impeller with low solidity, the tip leakage vortex breaks down with a large blockage effect because of high blade loading at the tip, which decreases the pressure ratio. The impeller with high solidity is subject to the spillage, which results in an early and large-scale stall that decreases the efficiency.


Author(s):  
Chunill Hah

Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.


Author(s):  
William Riéra ◽  
Lionel Castillon ◽  
Julien Marty ◽  
Francis Leboeuf

In the present study, the influence of the inlet condition on the tip clearance flow of an axial compressor is investigated. Two different ZDES computations are carried out and compared to RANS and URANS computations as well as to experimental data. A rotating distortion map of the flow cartography is set as inlet condition for the first ZDES computation. An azimuthally averaged inlet condition is used for the second one and uncouples the rotor tip-leakage vortex flutter phenomenon, which stems from the arrival of the Inlet Guide Vane wake, from the behaviour inherent to the rotor tip-leakage vortex. In the studied configuration, the Inlet Guide Vane tip vortex reveals to lower the effects from double leakage on the rotor. The topology of the rotor tip-leakage vortex is described and its development is analysed.


Author(s):  
Wei Li ◽  
Wei-Yang Qiao ◽  
Kai-Fu Xu ◽  
Hua-Ling Luo

The tip leakage flow has significant effects on turbine in loss production, aerodynamic efficiency, etc. Then it’s important to minimize these effects for a better performance by adopting corresponding flow control. The active turbine tip clearance flow control with injection from the tip platform is given in Part-1 of this paper. This paper is Part-2 of the two-part papers focusing on the effect of five different passive turbine tip clearance flow control methods on the tip clearance flow physics, which consists of a partial suction side squealer tip (Partial SS Squealer), a double squealer tip (Double Side Squealer), a pressure side tip shelf with inclined squealer tip on a double squealer tip (Improved PS Squealer), a tip platform extension edge in pressure side (PS Extension) and in suction side (SS Extension) respectively. Combined with the turbine rotor and the numerical method mentioned in Part 1, the effects of passive turbine tip clearance flow controls on the tip clearance flow were sequentially simulated. The detailed tip clearance flow fields with different squealer rims were described with the streamline and the velocity vector in various planes parallel to the tip platform or normal to the tip leakage vortex core. Accordingly, the mechanisms of five passive controls were put in evidence; the effects of the passive controls on the turbine efficiency and the tip clearance flow field were highlighted. The results show that the secondary flow loss near the outer casing including the tip leakage flow and the casing boundary layer can be reduced in all the five passive control methods. Comparing the active control with the passive control, the effect brought by the active injection control on the tip leakage flow is evident. The turbine rotor efficiency could be increased via the rational passive turbine tip clearance flow control. The Improved PS Squealer had the best effect on turbine rotor efficiency, and it increased by 0.215%.


Author(s):  
José Ramón Serrano ◽  
Roberto Navarro ◽  
Luis Miguel García-Cuevas ◽  
Lukas Benjamin Inhestern

Tip leakage loss characterization and modeling plays an important role in small size radial turbine research. The momentum of the flow passing through the tip gap is highly related with the tip leakage losses. The ratio of fluid momentum driven by the pressure gradient between suction side and pressure side and the fluid momentum caused by the shroud friction has been widely used to analyze and to compare different sized tip clearances. However, the commonly used number for building this momentum ratio lacks some variables, as the blade tip geometry data and the viscosity of the used fluid. To allow the comparison between different sized turbocharger turbine tip gaps, work has been put into finding a consistent characterization of radial tip clearance flow. Therefore, a non-dimensional number has been derived from the Navier Stokes Equation. This number can be calculated like the original ratio over the chord length. Using the results of wide range CFD data, the novel tip leakage number has been compared with the traditional and widely used ratio. Furthermore, the novel tip leakage number can be separated into three different non-dimensional factors. First, a factor dependent on the radial dimensions of the tip gap has been found. Second, a factor defined by the viscosity, the blade loading, and the tip width has been identified. Finally, a factor that defines the coupling between both flow phenomena. These factors can further be used to filter the tip gap flow, obtained by CFD, with the influence of friction driven and pressure driven momentum flow.


Author(s):  
Masanao Kaneko ◽  
Hoshio Tsujita

A transonic centrifugal compressor impeller is generally composed of the main and the splitter blades which are different in chord length. As a result, the tip leakage flows from the main and the splitter blades interact with each other and then complicate the flow field in the compressor. In this study, in order to clarify the individual influences of these leakage flows on the flow field in the transonic centrifugal compressor stage at near-choke to near-stall condition, the flows in the compressor at four conditions prescribed by the presence and the absence of the tip clearances were analyzed numerically. The computed results clarified the following noticeable phenomena. The tip clearance of the main blade induces the tip leakage vortex from the leading edge of the main blade. This vortex decreases the blade loading of the main blade to the negative value by the increase of the flow acceleration along the suction surface of the splitter blade, and consequently induces the tip leakage vortex caused by the negative blade loading of the main blade at any operating points. These phenomena decline the impeller efficiency. On the other hand, the tip clearance of the splitter blade decreases the afore mentioned acceleration by the formation of the tip leakage vortex from the leading edge of the splitter blade and the decrease of the incidence angle for the splitter blade caused by the suction of the flow into the tip clearance. These phenomena reduce the loss generated by the negative blade loading of the main blade and consequently reduce the decline of the impeller efficiency. Moreover, the tip clearances enlarge the flow separation around the diffuser inlet and then decline the diffuser performance independently of the operating points.


Sign in / Sign up

Export Citation Format

Share Document