Numerical Assessment of Unsteady Flow Effects on a Nozzled Turbocharger Turbine

Author(s):  
M. H. Padzillah ◽  
S. Rajoo ◽  
R. F. Martinez-Botas

In order to extract maximum amount of energy possible from the automotive reciprocating engine exhaust gas, the turbocharger usually installed closely downstream the exhaust valve thus exposing it to highly pulsating flow conditions. This condition induces highly complex flow field within the turbocharger stage and significantly impact its performance characteristics which is not fully understood. The main objective of this paper is to provide understanding of unsteady flow feature using a Computational Fluid Dynamics (CFD) approach validated with experimental data. Despite focusing on unsteady feature of the flow, this research also emphasizes the importance of accurately modelled geometry in the early section of the paper. A steady state validation against experimental data is performed prior to unsteady calculations. The effect of different phase shifting methods is described and the relationship of instantaneous efficiency with incidence angle is established. In the final section of this paper, the turbocharger stage is sectioned where its instantaneous performance is evaluated individually in each section. The unsteady simulation is performed at fixed 30 000 RPM with 20Hz pulsing flow.

Author(s):  
Mai Yamagami ◽  
Hidekazu Kodama ◽  
Dai Kato ◽  
Naoki Tsuchiya ◽  
Yasuo Horiguchi ◽  
...  

As a first step in practical application of virtual rig test, in present work, a full unsteady multistage simulation was performed for a 6-stage transonic axial compressor at design point. A steady multistage simulation was also performed and compared with the results of the unsteady simulation to clarify the unsteady flow effects. Comparison of overall performance, stage matching, and inter stage performance with measured test data showed that the unsteady multistage simulation could predict the performance reasonably. It was also demonstrated that, at design point, the steady multistage simulation could predict the stage matching at the same level as the unsteady multistage simulation. To clarify the effects of the unsteady flow in a multistage compressor, the pressure loss by unsteady wake interaction was investigated specifically at the inter-blade passage or down stream blade rows. Some issues in the predictive ability of the unsteady multistage simulation were newly found in the spanwise mixing phenomena.


2013 ◽  
Vol 135 (12) ◽  
Author(s):  
A. O. Nieckele ◽  
J. N. E. Carneiro ◽  
R. C. Chucuya ◽  
J. H. P. Azevedo

In the present work, the onset and subsequent development of slug flow in horizontal pipes is investigated by solving the transient one-dimensional version of the two-fluid model in a high resolution mesh using a finite volume technique. The methodology (named slug-capturing) was proposed before in the literature and the present work represents a confirmation of its applicability in predicting this very complex flow regime. Further, different configurations are analyzed here and comparisons are performed against different sets of experimental data. Predictions for mean slug variables were in good agreement with experimental data. Additionally, focus is given to the statistical properties of slug flows such as shapes of probability density functions of slug lengths (which were represented by gamma and log-normal distributions) as well as the evolution of the first statistical moments, which were shown to be well reproduced by the methodology.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hakan Coşanay ◽  
Hakan F. Oztop ◽  
Fatih Selimefendigil

Purpose The purpose of this study is to perform computational analysis on the steady flow and heat transfer due to a slot nanojet impingement onto a heated moving body. The object is moving at constant speed and nanoparticle is included in the heat transfer fluid. The unsteady flow effects and interactions of multiple impinging jets are also considered. Design/methodology/approach The finite volume method was used as the solver in the numerical simulation. The movement of the hot body in the channel is also considered. Influence of various pertinent parameters such as Reynolds number, jet to target surface spacing and solid nanoparticle volume fraction on the convective heat transfer characteristics are numerically studied in the transient regime. Findings It is found that the flow field and heat transfer becomes very complicated due to the interaction of multiple impinging jets with the movement of the hot body in the channel. Higher heat transfer rates are achieved with higher values of Reynolds number while the inclusion of nanoparticles resulted in a small impact on flow friction. The middle jet was found to play an important role in the heat transfer behavior while jet and moving body temperatures become equal after t = 80. Originality/value Even though some studies exist for the application of jet impingement heat transfer for a moving plate, the configuration with a solid moving hot body on a moving belt under the impacts of unsteady flow effects and interactions of multiple impinging jets have never been considered. The results of the present study will be helpful in the design and optimization of various systems related to convective drying of products, metal processing industry, thermal management in electronic cooling and many other systems.


Author(s):  
Wu Dong-run ◽  
Teng Jin-fang ◽  
Qiang Xiao-qing ◽  
Feng Jin-zhang

This paper applies a new analytical/empirical method to formulate the off-design deviation angle correlation of axial flow compressor blade elements. An implicit function of deviation angle is used to map off-design deviation curves into linear correlations (minimum linear correlation coefficient R = 0.959 in this paper). Solution of the coefficients in the correlation is given through the study of classical theories and statistical analysis of the experimental data. The off-design deviation angle can be calculated numerically. The approach requires only knowledge of the blade element geometry. The comparison among 2 classical correlations and the new correlation proposed in this paper shows the new correlation has minimum error over the entire range of incidence angle while classical correlations show high reliability only in a limited range. Experimental data in this paper is collected from NASA’s open technical reports. Rotors and stators are studied together. Considering there is significant deviation angle variation along spanwise direction, only data at 50% span is studied, if possible. The error among experimental data, statistical regressions of the experimental data, and numerical results based on the new correlation is discussed. It has to be noted that the influence of the flow condition other than incidence angle is only being discussed but with less break through.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Junwei Zhou ◽  
Weimin Bao ◽  
Geoffrey R. Tick ◽  
Hamed Moftakhari ◽  
Yu Li ◽  
...  

Abstract It has been observed in literature that for unsteady flow conditions the one-to-one relationships between flow depth, cross-sectional averaged velocity, and frictional resistance as determined from steady uniform flow cases may not be appropriate for these more complex flow systems. Thus, a general friction resistance formula needs to be modified through the addition of new descriptive terms to account for flow unsteadiness, in order to eliminate errors due to uniform and steady-flow assumptions. An extended Chezy formula incorporating both time and space partial derivatives of hydraulic parameters was developed using dimensional analysis to investigate the relationship between flow unsteadiness and friction resistance. Results show that the proposed formula performs better than the traditional Chezy formula for simulating real hydrograph cases whereby both formula coefficients are individually identified for each flood event and coefficients are predetermined using other flood events as calibration cases. Although the extended Chezy formula as well as the original Chezy formula perform worse with the increasing degree of flow unsteadiness, its results are less dramatically affected by unsteadiness intensity, thereby improving estimations of flood routing. As a result, it tends to perform much better than traditional Chezy formula for severe flood events. Under more complex conditions whereby peak flooding events may occur predominantly under unsteady flow, the extended Chezy model may provide as a valuable tool for researchers, practitioners, and water managers for assessing and predicting impacts for flooding and for the development of more appropriate mitigation strategies and more accurate risk assessments.


1998 ◽  
Vol 25 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Eui Soo Yoon ◽  
Byung Nam Kim ◽  
Myung Kyoon Chung

2013 ◽  
Vol 136 (3) ◽  
Author(s):  
Daniel R. Grates ◽  
Peter Jeschke ◽  
Reinhard Niehuis

The subject of this paper is the investigation of unsteady flow inside a transonic centrifugal compressor stage with a pipe-diffuser by utilizing unsteady 3D Reynolds-averaged Navier–Stokes simulations (unsteady 3D URANS). The computational fluid dynamics (CFD) results obtained are compared with detailed experimental data gathered using various steady and unsteady measurement techniques. The basic phenomena and mechanisms of the complex and highly unsteady flow inside the compressor with a pipe-diffuser are presented and analyzed in detail.


Author(s):  
Kai Zhang ◽  
AJ Wang

In order to ensure flight safety, the stall test is one of the most important steps in the airworthiness certification phase of civil aircraft. The twisted-swept fan is one of the most important components of the high bypass ratio engine. The unsteady flow field of the fan rotor stall condition is obtained by numerical simulation. At the same time, the time series flow field data of the stall condition flow field is acquired. The modal analysis of the unsteady flow field at stall condition was performed using the dynamic mode decomposition and proper orthogonal decomposition methods. Through modal identification of a large number of unsteady flow field data, the eigenvalues and corresponding modal information about the unsteady flow field change process are obtained. Finally, the evolution process of the unsteady flow field of the fan rotor under stall condition is visually demonstrated, and the coherent structures of different scales in the complex flow field under stall condition are revealed.


Author(s):  
Sridhar Murari ◽  
Sunnam Sathish ◽  
Ramakumar Bommisetty ◽  
Jong S. Liu

The knowledge of heat loads on the turbine is of great interest to turbine designers. Turbulence intensity and stator-rotor axial gap plays a key role in affecting the heat loads. Flow field and associated heat transfer characteristics in turbines are complex and unsteady. Computational fluid dynamics (CFD) has emerged as a powerful tool for analyzing these complex flow systems. Honeywell has been exploring the use of CFD tools for analysis of flow and heat transfer characteristics of various gas turbine components. The current study has two objectives. The first objective aims at development of CFD methodology by validation. The commercially available CFD code Fine/Turbo is used to validate the predicted results against the benchmark experimental data. Predicted results of pressure coefficient and Stanton number distributions are compared with available experimental data of Dring et al. [1]. The second objective is to investigate the influence of turbulence (0.5% and 10% Tu) and axial gaps (15% and 65% of axial chord) on flow and heat transfer characteristics. Simulations are carried out using both steady state and harmonic models. Turbulence intensity has shown a strong influence on turbine blade heat transfer near the stagnation region, transition and when the turbulent boundary layer is presented. Results show that a mixing plane is not able to capture the flow unsteady features for a small axial gap. Relatively close agreement is obtained with the harmonic model in these situations. Contours of pressure and temperature on the blade surface are presented to understand the behavior of the flow field across the interface.


Sign in / Sign up

Export Citation Format

Share Document