Aerodynamic Investigation of a High Pressure Ratio Turbo-Expander for Organic Rankine Cycle Applications

Author(s):  
Michele Marconcini ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Alberto Scotti Del Greco ◽  
Roberto Biagi

The design of radial-inflow turbines usually relies on one-dimensional or mean-line methods. While these approaches have so far proven to be quite effective, they can not assist the designer in coping with some important issues, such as mechanical integrity and complex flow features. Turbo-expanders are in general characterized by fully three-dimensional flow fields, strongly influenced by viscous effects and passage curvature. In particular, for high pressure ratio applications, such as in organic Rankine cycles, supersonic flow conditions are likely to be reached, thus involving the formation of a shock pattern which governs the interaction between nozzle and wheel components. The nozzle shock waves are periodically chopped by the impeller leading edge, and the resulting unsteady interaction is of primary concern for both mechanical integrity and aerodynamic performance. This work is focused on the aerodynamic issues and addresses some key aspects of the CFD modelling in the numerical analysis of turbo-expanders. Calculations were carried out by adopting models with increasing level of complexity, from the classical steady-state approach to the full-stage, time-accurate one. Results are compared in details and the impact of the computational model on the aerodynamic performance estimation is discussed.

Author(s):  
Zhendong Guo ◽  
Zhiming Zhou ◽  
Liming Song ◽  
Jun Li ◽  
Zhenping Feng

The design of high pressure ratio impellers is a challenging task. SRV2-O, a typical high pressure ratio centrifugal impeller is selected for the research. A good understanding of flow characteristics in the passage of SRV2-O is obtained by using 3D Reynolds-Averaged Navier-Stokes (RANS) solutions upon numerical validation. It confirms that tip leakage flow and shock wave boundary layer interactions produce the primary energy loss in this transonic impeller. A 3D multi-objective aerodynamic optimization and data mining method named BMOE is presented and programmed by integrating a self-adaptive multi-objective differential evolution algorithm SMODE, 3D blade parameterization method based on non-uniformed B-Spline, RANS solver technique and self-organization map (SOM) based data mining technique. Using BMOE, multi-objective aerodynamic design optimization and data mining is performed for SRV2-O. 14 Pareto solutions are obtained for maximizing isentropic efficiency and total pressure ratio of the impeller. Three typical Pareto solutions, Design A with the highest efficiency, Design B with the higher efficiency and larger pressure ratio and Design C with the maximum pressure ratio, are analyzed. Detailed analysis indicates that the aerodynamic performance of optimized designs is greatly improved. Furthermore, by SOM-based data mining on optimization results, trade-off relation between objective functions and parameter influence mechanism on impeller aerodynamic performance are visualized and explored.


Author(s):  
K.-L. Tzuoo ◽  
S. S. Hingorani ◽  
A. K. Sehra

Recent trend toward lightweight, compact compression systems for advanced aircraft gas turbine engines has created a need for very high pressure ratio fan and compressor stages. One way of achieving pressure ratio in excess of 3:1 in an axial blade row is to introduce splitters (partial vanes) between the principal blades, a concept pioneered by Wennerstrom during early 70s for application in a 3:1 pressure ratio single axial stage. This paper presents an advanced methodology for high pressure ratio splittered rotor design. The methodology centers around combining a meridional flow calculation, an arbitrary meanline blade generation procedure, and 3-D inviscid and viscous analyses. Methods for specifying work distribution, solidity, loss, and deviation distributions, as well as the airfoil generation and splitter vane placement are discussed in detail. Importance of 3-D viscous effects along with results from a 3-D viscous calculation for Wennerstrom’s splittered rotor are also presented.


Author(s):  
Rodrigo R. Erdmenger ◽  
Vittorio Michelassi

The impact of leading edge sweep in an attempt to reduce shock losses and extend the stall margin on axial compressors has been extensively studied, however only a few studies have looked at understanding the impact of leading edge contouring on the performance of centrifugal compressors. The present work studies the impact of forward and aft sweep on the main and splitter blade leading edge of a generic high flow coefficient and high pressure ratio centrifugal compressor design and the impact on its overall peak efficiency, pressure ratio and operating range. The usage of aft sweep on the main blade led to an increase of the pressure ratio and efficiency, however it also led to a reduction of the stable operating range of the impeller analyzed. The forward sweep cases analyzed where the tip leading edge was displaced axially forward showed a slight increase in pressure ratio, and a significant increase on operating range. The impact of leading edge sweep on the sensitivity of the impeller performance to tip clearance was also studied. The impeller efficiency was found to be less sensitive to an increase of tip clearance for both aft and forward sweep cases studied. The forward sweep cases studied also showed a reduced sensitivity from operating range to tip clearance. The studies conducted on the splitter leading edge profile indicate that aft sweep may help to increase the operating range of the impeller analyzed by up to 16% while maintaining similar pressure ratio and efficiency characteristics of the impeller. The improvement of operating range obtained with the leading edge forward sweep and splitter aft sweep was caused by a reduction of the interaction of the tip vortex of the main blade with the splitter tip, and a reduction of the blockage caused by this interaction.


Author(s):  
Juri Bellucci ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Lorenzo Arcangeli ◽  
Nicola Maceli ◽  
...  

This work aims at investigating the impact of axial gap variation on aerodynamic performance of a high-pressure steam turbine stage. Numerical and experimental campaigns were conducted on a 1.5-stage of a reaction steam turbine. This low speed test rig was designed and operated in different operating conditions. Two different configurations were studied in which blades axial gap was varied in a range from 40% to 95% of the blade axial chord. Numerical analyses were carried out by means of three-dimensional, viscous, unsteady simulations, adopting measured inlet/outlet boundary conditions. Two sets of measurements were performed: steady measurements, from one hand, for global performance estimation of the whole turbine, such as efficiency, mass flow, and stage work; steady and unsteady measurements, on the other hand, were performed downstream of rotor row, in order to characterize the flow structures in this region. The fidelity of computational setup was proven by comparing numerical results to measurements. Main performance curves and spanwise distributions have shown a good agreement in terms of both shape of curves/distributions and absolute values. Moreover, the comparison of two-dimensional maps downstream of rotor row has shown similar structures of the flow field. Finally, a comprehensive study of the axial gap effect on stage aerodynamic performance was carried out for four blade spacings (10%, 25%, 40%, and 95% of S1 axial chord) and five aspect ratios (1.0, 1.6, 3, 4, and 5). The results pointed out how unsteady interaction between blade rows affects stage operation, in terms of pressure and flow angle distributions, as well as of secondary flows development. The combined effect of these aspects in determining the stage efficiency is investigated and discussed in detail.


Author(s):  
Juri Bellucci ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Lorenzo Arcangeli ◽  
Nicola Maceli ◽  
...  

This work aims at investigating the impact of axial gap variation on aerodynamic performance of a high-pressure steam turbine stage. Numerical and experimental campaigns were conducted on a 1.5-stage of a reaction steam turbine. This low speed test rig was designed and operated in different operating conditions. Two different configurations were studied, in which blades axial gap was varied in a range from 40% to 95% of the blade axial chord. Numerical analyses were carried out by means of three-dimensional, viscous, unsteady simulations, adopting measured inlet/outlet boundary conditions. Two set of measurements were performed. Steady measurements, from one hand, for global performance estimation of the whole turbine, such as efficiency, mass flow, stage work. Steady and unsteady measurements, on the other hand, were performed downstream of rotor row, in order to characterize the flow structures in this region. The fidelity of computational setup was proven by comparing numerical results to measurements. Main performance curves and span-wise distributions shown a good agreement in terms of both shape of curves/distributions and absolute values. Moreover, the comparison of two dimensional maps downstream of rotor row shown similar structures of the flow field. Finally, a comprehensive study of the axial gap effect on stage aerodynamic performance was carried out for four blade spacings (10%, 25%, 40% and 95% of S1 axial chord), and five aspect ratios (1.0, 1.6, 3, 4 and 5). The results pointed out how unsteady interaction between blade rows affects stage operation, in terms of pressure and flow angle distributions, as well as of secondary flows development. The combined effect of these aspects in determining the stage efficiency is investigated and discussed in detail.


Author(s):  
Rodrigo R. Erdmenger ◽  
Vittorio Michelassi

The uses of tandem inducers has been proposed in the past in an attempt to reduce the inducer shock losses and to improve the performance and operating range of centrifugal compressors. However throughout the literature the benefits/penalties of this type of compressor design are still unclear, with contradictory conclusions and very few studies attempting to understand the causes of the observed benefits/penalties. Additionally none of the cases reported for centrifugal compressors has looked into the impact of overlap between the inducer and the main blade. The current study looks into the different aspects of the design of centrifugal compressors with tandem inducers and their effect on the performance of a high flow coefficient, high pressure ratio centrifugal compressor. Aspects such as clocking, axial gap between the inducer and the compressor main blade, axial overlap, and the performance in combination with a vaned diffuser are discussed. Overall the results indicate that it is possible to design centrifugal compressors with tandem inducers that provide similar or even a slight performance benefit at design point, and that tandem inducers can provide significant performance benefits at off design conditions by improving the flow conditions along the main blade suction side, and by improving the inlet conditions to a vaned diffuser. The results also indicate that the impact of the axial gap between the inducer and the main blade has little impact on the compressor performance, that clocking will have a significant impact on the performance of the compressor and that the best performance will be obtained when the tandem inducer is almost aligned with the main blade of the compressor, since this avoids the blockage and losses incurred by other clocking arrangements.


2013 ◽  
Vol 56 (6) ◽  
pp. 1361-1369 ◽  
Author(s):  
XinQian Zheng ◽  
Yun Lin ◽  
BinLin Gan ◽  
WeiLin Zhuge ◽  
YangJun Zhang

Author(s):  
Hideaki Tamaki

Centrifugal compressors used for turbochargers need to achieve a wide operating range. The author has developed a high pressure ratio centrifugal compressor with pressure ratio 5.7 for a marine use turbocharger. In order to enhance operating range, two different types of recirculation devices were applied. One is a conventional recirculation device. The other is a new one. The conventional recirculation device consists of an upstream slot, bleed slot and the annular cavity which connects both slots. The new recirculation device has vanes installed in the cavity. These vanes were designed to provide recirculation flow with negative preswirl at the impeller inlet, a swirl counterwise to the impeller rotational direction. The benefits of the application of both of the recirculation devices were ensured. The new device in particular, shifted surge line to a lower flow rate compared to the conventional device. This paper discusses how the new recirculation device affects the flow field in the above transonic centrifugal compressor by using steady 3-D calculations. Since the conventional recirculation device injects the flow with positive preswirl at the impeller inlet, the major difference between the conventional and new recirculation device is the direction of preswirl that the recirculation flow brings to the impeller inlet. This study focuses on two effects which preswirl of the recirculation flow will generate. (1) Additional work transfer from impeller to fluid. (2) Increase or decrease of relative Mach number. Negative preswirl increases work transfer from the impeller to fluid as the flow rate reduces. It increases negative slope on pressure ratio characteristics. Hence the recirculation flow with negative preswirl will contribute to stability of the compressor. Negative preswirl also increases the relative Mach number at the impeller inlet. It moves shock downstream compared to the conventional recirculation device. It leads to the suppression of the extension of blockage due to the interaction of shock with tip leakage flow.


Sign in / Sign up

Export Citation Format

Share Document