scholarly journals Design Methodology for Splittered Axial Compressor Rotors

Author(s):  
K.-L. Tzuoo ◽  
S. S. Hingorani ◽  
A. K. Sehra

Recent trend toward lightweight, compact compression systems for advanced aircraft gas turbine engines has created a need for very high pressure ratio fan and compressor stages. One way of achieving pressure ratio in excess of 3:1 in an axial blade row is to introduce splitters (partial vanes) between the principal blades, a concept pioneered by Wennerstrom during early 70s for application in a 3:1 pressure ratio single axial stage. This paper presents an advanced methodology for high pressure ratio splittered rotor design. The methodology centers around combining a meridional flow calculation, an arbitrary meanline blade generation procedure, and 3-D inviscid and viscous analyses. Methods for specifying work distribution, solidity, loss, and deviation distributions, as well as the airfoil generation and splitter vane placement are discussed in detail. Importance of 3-D viscous effects along with results from a 3-D viscous calculation for Wennerstrom’s splittered rotor are also presented.

Author(s):  
H. C. Eatock ◽  
M. D. Stoten

United Aircraft Corporation studied the potential costs of various possible gas turbine engines which might be used to reduce automobile exhaust emissions. As part of that study, United Aircraft of Canada undertook the preliminary design and performance analysis of high-pressure-ratio nonregenerated (simple cycle) gas turbine engines. For the first time, high levels of single-stage component efficiency are available extending from a pressure ratio less than 4 up to 10 or 12 to 1. As a result, the study showed that the simple-cycle engine may provide satisfactory running costs with significantly lower manufacturing costs and NOx emissions than a regenerated engine. In this paper some features of the preliminary design of both single-shaft and a free power turbine version of this engine are examined. The major component technology assumptions, in particular the high pressure ratio centrifugal compressor, employed for performance extrapolation are explained and compared with current technology. The potential low NOx emissions of the simple-cycle gas turbine compared to regenerative or recuperative gas turbines is discussed. Finally, some of the problems which might be encountered in using this totally different power plant for the conventional automobile are identified.


Author(s):  
Matthew B. Rivera ◽  
Randall D. Manteufel

A current issue with high-pressure-ratio compressors found in aircraft engines is the temperature of the air exiting the compressor. The exiting air is used as coolant for engine components found in later stages of the engine such as first-stage turbine blades, and afterburner walls. A viable option for reducing outlet temperature of high-pressure-ratio compressors is to “bleed-off” a fraction of the air which is cooled in a heat exchanger by rejecting heat into the liquid fuel stream and then use the air for cooling critical components downstream. Bleeding off air from the outlet of the compressor has two benefits: (1) air temperature is reduced, and (2) fuel temperature is elevated. Along with reduced air temperatures, the fuel will ultimately receive the heat lost from the air, making the fuel more ideal for combustion purposes. The higher temperature the fuel is received in the combustion process, the greater the work output will be according to the basics of thermodynamic combustion. The objective of this case study is to optimize the efficiency of the cross-flow micro channel heat exchanger, with respect to (1) volume (1.75–2.75 mm3) and heat transfer, and (2) weight (0.15–.25 N) and heat transfer. The optimization of the heat exchanger will be evaluated within the bounds of the 2nd law of thermodynamics (exergy). The only effective way to measure the 2nd law of thermodynamics is through exergy destruction or its equivalent form: entropy generation as a factor of dead state temperature. With relations and equations obtained to design an optimal heat exchanger, applications to high performance aircraft gas turbine engines is considered through exergy. The importance of developing an exergetic analysis for a thermal system is highly effective for identifying area’s within the system that have the path of highest resistance to work potential through various modes of heat transfer and pressure loss. Thus, optimization to reduce exergy destruction is sought after through this design method alongside verifying other heat exchanger methods through effectiveness.


Author(s):  
Michele Marconcini ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Alberto Scotti Del Greco ◽  
Roberto Biagi

The design of radial-inflow turbines usually relies on one-dimensional or mean-line methods. While these approaches have so far proven to be quite effective, they can not assist the designer in coping with some important issues, such as mechanical integrity and complex flow features. Turbo-expanders are in general characterized by fully three-dimensional flow fields, strongly influenced by viscous effects and passage curvature. In particular, for high pressure ratio applications, such as in organic Rankine cycles, supersonic flow conditions are likely to be reached, thus involving the formation of a shock pattern which governs the interaction between nozzle and wheel components. The nozzle shock waves are periodically chopped by the impeller leading edge, and the resulting unsteady interaction is of primary concern for both mechanical integrity and aerodynamic performance. This work is focused on the aerodynamic issues and addresses some key aspects of the CFD modelling in the numerical analysis of turbo-expanders. Calculations were carried out by adopting models with increasing level of complexity, from the classical steady-state approach to the full-stage, time-accurate one. Results are compared in details and the impact of the computational model on the aerodynamic performance estimation is discussed.


Author(s):  
U. K. Saha ◽  
B. Roy

For land and marine based gas turbine engines, heavy duty industrial axial flow fans and compressors, variable camber tandem blading seems to be an attractive proposition in the pursuit of high pressure ratio machines under design and off-design power settings. In the present investigations, experiments have been carried out in a cascade wind tunnel to explore the variable camber capability of a tandem blade at two extreme camber settings. Aerodynamic performance studies have been made qualitatively on the basis of static pressure coefficient distribution, diffusion factor and mass averaged loss coefficient data. Experimental evidences demonstrate the possible operation of variable camber blading within a wide range of 20° camber variation.


Author(s):  
Allan D. Grosvenor ◽  
David A. Taylor ◽  
Jonathan R. Bucher ◽  
Michael J. Aarnio ◽  
Paul M. Brown ◽  
...  

The testing of an 8:1 pressure ratio supersonic single axial compressor rotor referred to as Rampressor-2 is described. Design of this shockwave compression system is based on principles employed for supersonic intakes consisting of a multi-shock compression system and boundary layer treatment. The rotor consists of three blade passages within which the shock system is produced by a ramp, throat and diffuser contoured on the hub. The technology has been previously demonstrated in a 2.3:1 pressure ratio experimental test compressor (Rampressor-1). Measured performance is compared with numerical predictions. Further developments to improve Rampressor performance are discussed, and the appropriateness of this technology for Carbon Capture & Sequestration and LNG applications is highlighted.


Author(s):  
Shraman Narayan Goswami ◽  
M. Govardhan

The need of increased stall margin is very high for aero gas turbine engines, as they operate under varied operating conditions. A number of different options are being used to increase the stall margin of gas turbine engines. Circumferential casing groove, in the compressor section of a gas turbine engine, is one of such methods. Incorporation of the grooves on the shroud increases the stall margin of the compressor, but this generally gives rise to loss of performance, such as efficiency and pressure ratio. By employing 3D blading techniques for rotor blades as well as stator vanes, performance of a compressor can be increased. 3D blading helps in reducing secondary flow losses and hence increased performance. Sweep and lean are examples of 3D blading, which is very common in any modern gas turbine compressor. A number of literatures are available in public domain, giving detailed understanding of effect of circumferential casing grooves and 3D blade features, but the interaction effect of sweep and casing grooves are not well published in public domain literature. In this work, an effort is made to understand, numerically, the interaction effect of sweep with circumferential grooves, using Computational Fluid Dynamics (CFD). Any numerical tool needs thorough validation before the results of numerical analyses can be used for analyzing the underlying physics. NASA Rotor37 is used to validate current CFD methodology. Mesh sensitivity is carried out to get mesh independence solution. Different turbulence models are used to get the best turbulence model for the problem in hand. 1D averaged performance data as well as hub to shroud variation of various flow parameters are compared to have full confidence on the CFD methodology. A baseline axial compressor rotor, without sweep and lean is generated, as the first step of this study. This rotor is created by using hub and tip profiles of NASA Rotor37. The profiles are stacked along a radial line through their center of gravities, which has resulted in rotor geometry without any sweep and lean. Modifications are done to the tip profile of the baseline rotor, in terms of stagger angle, to get comparable performance w.r.t. NASA Rotor37. Casing of the NASA Roto37 is used as the redesigned compressor casing. Circumferential casing grooves, with five grooves between leading edge to trailing edge, are created as per industry standards. Meshing and modeling are done according to the best practices developed while validating CFD methodology. It is to be noted that the casing grooves and the main flow domain are meshed with one to one mesh connectivity, in order to avoid any numerical losses due to interface interpolations. This is considered very critical in this work, as the vortices from the tip is expected to have a strong interaction with grooves. This interaction is expected to create high gradients of flow variables in this region. Valuable flow information might be lost, if flow variables are interpolated in this region. Baseline rotor is analyzed with and without casing grooves from choke to stall at 100% corrected speed. As expected, introduction of casing grooves has resulted in increased stall margin. A number of rotor geometries are created with different amount of sweeps. In the current study, blades are swept in the direction of chord, in order to avoid introduction of any sweep induced lean. The span location, where sweep starts, is also changed to understand the localized and global effect of this blade design features. Results obtained from numerical simulations of these geometries are presented in this paper. The performance and flow features are compared with respect to baseline rotor, with and without circumferential grooves, in an attempt to understand the underlying flow physics.


Author(s):  
Giuseppe Vannini

The author’s company is currently developing some centrifugal compressor prototypes where the traditional rotor design based on shrunk on wheels and spacers is not suitable due to the specific service requirements (e.g. high peripheral speed or high temperature). For instance the development of a new centrifugal compressor technology aimed to reduce the number of compressor units needed to fulfill a given service is ongoing. In order to accomplish this challenging target a very high rotational speed is required together with special “high pressure ratio” centrifugal stages. The rotor mechanical configuration which has been selected here is a stacked configuration where each centrifugal wheel is integral with the relevant shaft portion. The several shaft portions are mated together through high precision toothed connections (Hirth couplings) and the assembly is secured through a pre-stretched tie-rod. This rotor stacked configuration is not typical for the most of the industrial centrifugal compressors (a solid shaft with shrink fitted impellers is the common solution, as anticipated) but it is allowed by API standards [1], and it is referenced in Turbomachinery technical literature [2]. The rotordynamics of this special prototype is very challenging since it deals with a seven piece stacked rotor running supercritical. An extensive validation program was required in addition to careful design. This is the specific subject of the present paper which will cover the main following items: validation of the “rotor alone” rotordynamic modelization through comparison with the relevant ping test results, selection of special high speed journal bearings, and overview of the low and high speed balancing process. All these steps together finally allowed the author’s company to fully demonstrate the soundness of this stacked rotor technology for application in High Pressure Ratio Compression service.


Sign in / Sign up

Export Citation Format

Share Document