An LP Turbine at Extreme Off-Design Operation

Author(s):  
Martin Lipfert ◽  
Martin Marx ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Inga Mahle ◽  
...  

In a cooperative project between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines GmbH a two-stage low pressure turbine with integrated 3D airfoil and endwall contouring is tested. The experimental data taken in the altitude test-facility study the effect of high incidence in off-design operation. Steady measurements are covering a wide range of Reynolds numbers between 40,000 and 180,000. The results are compared with steady multistage CFD predictions with a focus on the stator rows. A first unsteady simulation is taken into account as well. The CFD simulations include leakage flow paths with disc cavities modeled. Compared to design operation the extreme off-design high-incidence conditions lead to a different flow-field Reynolds number sensitivity. Airfoil lift data reveals changing incidence with Reynolds number of the second stage. Increased leading edge loading of the second vane indicates a strong cross channel pressure gradient in the second stage leading to larger secondary flow regions and a more three-dimensional flow field. Global characteristics and area traverse data of the second vane are discussed. The unsteady CFD approach indicates improvement in the numerical prediction of the predominating flow field.

2013 ◽  
Vol 136 (3) ◽  
Author(s):  
Martin Lipfert ◽  
Martin Marx ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Inga Mahle ◽  
...  

In a cooperative project between the Institute of Aircraft Propulsion Systems and MTU Aero Engines GmbH, a two-stage low pressure turbine with integrated 3D airfoil and endwall contouring is tested. The experimental data taken in the altitude test-facility study the effect of high incidence in off-design operation. Steady measurements are covering a wide range of Reynolds numbers between 40,000 and 180,000. The results are compared with steady multistage CFD predictions with a focus on the stator rows. A first unsteady simulation is taken into account as well. The CFD simulations include leakage flow paths with disk cavities modeled. Compared to design operation the extreme off-design high-incidence conditions lead to a different flow-field Reynolds number sensitivity. Airfoil lift data reveals changing incidence with Reynolds number of the second stage. Increased leading edge loading of the second vane indicates a strong cross channel pressure gradient in the second stage leading to larger secondary flow regions and a more three-dimensional flow-field. Global characteristics and area traverse data of the second vane are discussed. The unsteady CFD approach indicates improvement in the numerical prediction of the predominating flow-field.


Author(s):  
Matthias Ku¨rner ◽  
Carsten Schneider ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Jochen Gier

The new LP turbine test rig “ATRD” at the Institute of Aircraft Propulsion Systems (ILA) at Stuttgart University has been used to study the detailed effects of Reynolds number variation. The two-stage LP turbine has been developed in a cooperation of ILA and MTU Aero Engines GmbH. Changes in the turbine characteristics are discussed. Five hole probe area traverse data has been acquired at exit from each row of aerofoils across a broad range of Reynolds numbers, over 88,000 down to 35,000. The experimental data is supported by multi-row steady CFD predictions. The behaviour of wakes, loss cores and secondary deviations is identified across the Reynolds number range. The present study is focusing on the effects of Reynolds number variation on the vane of the second stage.


Author(s):  
K. Funazaki ◽  
K. Okamura ◽  
Y. Ebina ◽  
Y. Sato ◽  
T. Kosugi ◽  
...  

This paper proposes a novel method to improve aerodynamic performance of highly loaded Low-Pressure (LP) turbine airfoils for aeroengines over a relatively wide range of Reynolds number. This new method employs two types of approaches; one is the equipment of two-dimensional contouring with small step on the suction surface of the airfoil and the other approach is a re-shaping of the airfoil near the trailing edge. A linear cascade test facility is employed to investigate the aerodynamic performance of the newly proposed airfoils by use of a miniature Pitot probe. Suction surface boundary layers as well as airfoil wakes are also measured using a hot wire probe. In the experiment, various flow conditions, Reynolds number, wake-passing Strouhal number, are examined. Numerical simulations are carried out to have a better understanding of the flow field around the airfoil. URANS and LES are employed for this purpose. It is found that the proposed method has a capability to reduce the profile loss to some extent.


Author(s):  
Matthias Kuerner ◽  
Georg A. Reichstein ◽  
Daniel Schrack ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
...  

A two-stage turbine is tested in a cooperation between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines GmbH (MTU). The experimental results taken in the Altitude Test Facility (ATF) are used to assess the impact of cavity flow and leakage on vortex structures. The analysis focuses on a range of small Reynolds numbers, from as low as 35,000 up to 88,000. The five hole probe area traverse data is compared to steady multistage CFD predictions behind the second vane. The numerical model compares computations without and with cavities modeled. The simulation with cavities is superior to the approach without cavities. The vortex induced blockage is found to be inversely proportional to Reynolds number. The circulation of the vortices is dependent on the Reynolds number showing a reversing trend to smallest Reynolds numbers. The steady numerical model as of yet is unsuitable to predict these trends. A first unsteady simulation suggests major improvements.


Author(s):  
Georg A. Reichstein ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Karl Engel

A two-stage turbine is tested in cooperation between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines GmbH (MTU). The experimental results taken in the Altitude Test Facility (ATF) are used to assess the quality of the numerical simulation with regard to cavity size and seal gap height. The analysis focuses on a range of small Reynolds numbers, from as low as 35,000 up to 88,000. Circumferentially averaged five-hole-probe area traverse data is compared to steady multistage CFD predictions. Previous analysis showed the simulation with cavities to be superior to the approach without cavities. For most of the Reynolds lapse numerically changing the cavity volume is of no significance for the prediction of the main flow. Only at the smallest Reynolds number these trends diverge. Numerically changing the seal gap height forces the prediction closer to the experimental data on global values. At the smallest Reynolds number the improvements from changing the gap height cease to exist.


Author(s):  
Venkata Ravishankar Kasibhotla ◽  
Danesh Tafti

The paper is concerned with the prediction and analysis of dynamic stall of flow past a pitching NACA0012 airfoil at 1 million Reynolds number based on the chord length of the airfoil and at reduced frequency of 0.25 in a three dimensional flow field. The turbulence in the flow field is resolved using large eddy simulations with the dynamic Smagorinsky model at the sub grid scale. The development of dynamic stall vortex, shedding and reattachment as predicted by the present study are discussed in detail. This study has shown that the downstroke phase of the pitching motion is strongly three dimensional and is highly complex, whereas the flow is practically two dimensional during the upstroke. The lift coefficient agrees well with the measurements during the upstroke. However, there are differences during the downstroke. The computed lift coefficient undergoes a sharp drop during the start of the downstroke as the convected leading edge vortex moves away from the airfoil surface. This is followed by a recovery of the lift coefficient with the formation of a secondary trailing edge vortex. While these dynamics are clearly reflected in the predicted lift coefficient, the experimental evolution of lift during the downstroke maintains a fairly smooth and monotonic decrease in the lift coefficient with no lift recovery. The simulations also show that the reattachment process of the stalled airfoil is completed before the start of the upstroke in the subsequent cycle due to the high reduced frequency of the pitching cycle.


2000 ◽  
Vol 124 (1) ◽  
pp. 140-146 ◽  
Author(s):  
V. Schramm ◽  
K. Willenborg ◽  
S. Kim ◽  
S. Wittig

This paper reports numerical predictions and measurements of the flow field in a stepped labyrinth seal. The theoretical work and the experimental investigations were successfully combined to gain a comprehensive understanding of the flow patterns existing in such elements. In order to identify the influence of the honeycomb structure, a smooth stator as well as a seal configuration with a honeycomb facing mounted on the stator wall were investigated. The seal geometry is representative of typical three-step labyrinth seals of modern aero engines. The flow field was predicted using a commercial finite volume code with the standard k-ε turbulence model. The computational grid includes the basic seal geometry as well as the three-dimensional honeycomb structures.


Author(s):  
Ranjan Saha ◽  
Jens Fridh ◽  
Torsten Fransson ◽  
Boris I. Mamaev ◽  
Mats Annerfeldt

An experimental study of the hub leading edge contouring using fillets is performed in an annular sector cascade to observe the influence of secondary flows and aerodynamic losses. The investigated vane is a three dimensional gas turbine guide vane (geometrically similar) with a mid-span aspect ratio of 0.46. The measurements are carried out on the leading edge fillet and baseline cases using pneumatic probes. Significant precautions have been taken to increase the accuracy of the measurements. The investigations are performed for a wide range of operating exit Mach numbers from 0.5 to 0.9 at a design inlet flow angle of 90°. Data presented include the loading, fields of total pressures, exit flow angles, radial flow angles, as well as profile and secondary losses. The vane has a small profile loss of approximately 2.5% and secondary loss of about 1.1%. Contour plots of vorticity distributions and velocity vectors indicate there is a small influence of the vortex-structure in endwall regions when the leading edge fillet is used. Compared to the baseline case the loss for the filleted case is lower up to 13% of span and higher from 13% to 20% of the span for a reference condition with Mach no. of 0.9. For the filleted case, there is a small increase of turning up to 15% of the span and then a small decrease up to 35% of the span. Hence, there are no significant influences on the losses and turning for the filleted case. Results lead to the conclusion that one cannot expect a noticeable effect of leading edge contouring on the aerodynamic efficiency for the investigated 1st stage vane of a modern gas turbine.


Author(s):  
Yanxi Song ◽  
Jinliang Xu

We study the production and motion of monodisperse double emulsions in microfluidics comprising series co-flow capillaries. Both two and three dimensional simulations are performed. Flow was determined by dimensionless parameters, i.e., Reynolds number and Weber number of continuous and dispersed phases. The co-flow generated droplets are sensitive to the Reynolds number and Weber number of the continuous phase, but insensitive to those of the disperse phase. Because the inner and outer drops are generate by separate co-flow processes, sizes of both inner and outer drops can be controlled by adjusting Re and We for the continuous phase. Meanwhile, the disperse phase has little effect on drop size, thus a desirable generation frequency of inner drop can be reached by merely adjusting flow rate of the inner fluid, leading to desirable number of inner drops encapsulated by the outer drop. Thus highly monodisperse double emulsions are obtained. It was found that only in dripping mode can droplet be of high mono-dispersity. Flow begins to transit from dripping regime to jetting regime when the Re number is decreased or Weber number is increased. To ensure that all the droplets are produced over a wide range of running parameters, tiny tapered tip outlet for the disperse flow should be applied. Smaller the tapered tip, wider range for Re and we can apply.


Author(s):  
Abdollah Khodadoust

Abstract The effect of a simulated glaze ice accretion on the flow field of a three-dimensional wing is studied experimentally. A PC-based data acquisition and reduction system was used with a four-beam two-color fiber-optic laser Doppler velocimeter (LDV) to map the flow field along three spanwise cuts on the model. Results of the LDV measurements on the upper surface of the finite wing model without the simulated glaze ice accretion are presented for α = 0 degrees at Reynolds number of 1.5 million. Measurements on the centerline of the clean model compared favorably with theory.


Sign in / Sign up

Export Citation Format

Share Document