A Novel Method for Improvement of Aerodynamic Performance of Highly Loaded LP Turbine Airfoils for Aeroengines

Author(s):  
K. Funazaki ◽  
K. Okamura ◽  
Y. Ebina ◽  
Y. Sato ◽  
T. Kosugi ◽  
...  

This paper proposes a novel method to improve aerodynamic performance of highly loaded Low-Pressure (LP) turbine airfoils for aeroengines over a relatively wide range of Reynolds number. This new method employs two types of approaches; one is the equipment of two-dimensional contouring with small step on the suction surface of the airfoil and the other approach is a re-shaping of the airfoil near the trailing edge. A linear cascade test facility is employed to investigate the aerodynamic performance of the newly proposed airfoils by use of a miniature Pitot probe. Suction surface boundary layers as well as airfoil wakes are also measured using a hot wire probe. In the experiment, various flow conditions, Reynolds number, wake-passing Strouhal number, are examined. Numerical simulations are carried out to have a better understanding of the flow field around the airfoil. URANS and LES are employed for this purpose. It is found that the proposed method has a capability to reduce the profile loss to some extent.

2002 ◽  
Vol 124 (3) ◽  
pp. 385-392 ◽  
Author(s):  
R. J. Howell ◽  
H. P. Hodson ◽  
V. Schulte ◽  
R. D. Stieger ◽  
Heinz-Peter Schiffer ◽  
...  

This paper describes a detailed study into the unsteady boundary layer behavior in two high-lift and one ultra-high-lift Rolls-Royce Deutschland LP turbines. The objectives of the paper are to show that high-lift and ultra-high-lift concepts have been successfully incorporated into the design of these new LP turbine profiles. Measurements from surface mounted hot film sensors were made in full size, cold flow test rigs at the altitude test facility at Stuttgart University. The LP turbine blade profiles are thought to be state of the art in terms of their lift and design philosophy. The two high-lift profiles represent slightly different styles of velocity distribution. The first high-lift profile comes from a two-stage LP turbine (the BR710 cold-flow, high-lift demonstrator rig). The second high-lift profile tested is from a three-stage machine (the BR715 LPT rig). The ultra-high-lift profile measurements come from a redesign of the BR715 LP turbine: this is designated the BR715UHL LP turbine. This ultra-high-lift profile represents a 12 percent reduction in blade numbers compared to the original BR715 turbine. The results from NGV2 on all of the turbines show “classical” unsteady boundary layer behavior. The measurements from NGV3 (of both the BR715 and BR715UHL turbines) are more complicated, but can still be broken down into classical regions of wake-induced transition, natural transition and calming. The wakes from both upstream rotors and NGVs interact in a complicated manner, affecting the suction surface boundary layer of NGV3. This has important implications for the prediction of the flows on blade rows in multistage environments.


Author(s):  
D. J. Patterson ◽  
M. Hoeger

Because of the laminar boundary-layer’s inability to withstand moderate adverse pressure gradients without separating, profile losses in LP turbines operating at low Reynolds numbers can be high. The choice of design pressure distribution for the blading is thus of great importance. Three sub-sonic LP turbine nozzle-guide-vane cascade profiles have been tested over a wide range of incidence, Mach number and Reynolds number. The three profiles are of low, medium and high deflection and, as such, display significantly different pressure distributions. The tests include detailed boundary-layer traverses, trailing-edge base-pressure monitoring and oil-flow visualisation. It is shown that the loss variation with Reynolds number is a function of pressure distribution and that the trailing-edge loss component is dominant at low Reynolds number. The importance of achieving late flow transition — rather than separation — in the suction-surface trailing-edge region is stressed. The paper concludes by remarking on the advantages and practical implications of each loading design.


Author(s):  
T. Zoric ◽  
I. Popovic ◽  
S. A. Sjolander ◽  
T. Praisner ◽  
E. Grover

At the 2006 ASME-IGTI Turbo-Expo, low-speed cascade results were presented for the midspan aerodynamic behaviour of a family of three highly loaded low-pressure (LP) turbine airfoils operating over a wide range of Reynolds numbers (25,000 to 150,000 based on the axial chord and inlet velocity), and for values of freestream turbulence intensity of 1.5% and 4%. All three airfoils have the same design inlet and outlet flow angles. The baseline cascade has a Zweifel coefficient of 1.08 and the two additional blade rows have values of 1.37. The new, more highly-loaded blade rows differ mainly in their loading distributions: one is front-loaded while the other is aft-loaded. The new front-loaded airfoil was found to have particularly attractive profile performance. Despite its exceptionally high value of Zweifel coefficient, it was found to be free of a separation bubble on its suction side at Reynolds numbers as low as 50,000, and this was reflected in very good profile loss behaviour. However, it was also noted in the earlier paper that the choice of a particular loading level and loading distribution would be influenced by more than its profile performance at design incidence. The present two-part paper extends the midspan aerodynamic comparison of the three airfoils to the secondary flow performance. The first part of the paper discusses both the profile and secondary flow performance of the three cascades at their design Reynolds number of 80,000 (or ∼ 125,000 based on exit velocity) for two freestream turbulence intensities of 1.5% and 4%. The secondary flow behaviour was determined from detailed flowfield measurements made at 40% axial chord downstream of the trailing edge using a seven-hole pressure probe. In addition to providing total pressure losses, the seven-hole probe measurements were also processed to give the downstream vorticity distributions. As has been found in other secondary flow investigations in turbine cascades, the present front-loaded airfoil showed higher secondary losses than the aft-loaded airfoil with the same value of Zweifel coefficient.


Author(s):  
R. J. Howell ◽  
H. P. Hodson ◽  
V. Schulte ◽  
Heinz-Peter Schiffer ◽  
F. Haselbach ◽  
...  

This paper describes a detailed study into the unsteady boundary layer behaviour in two high lift and one ultra high lift Rolls-Royce Deutschland LP turbines. The objectives of the paper are to show that high lift and ultra high-lift concepts have been successfully incorporated into the design of these new LP turbine profiles. Measurements from surface mounted hot film sensors were made in full size, cold flow test rigs at the altitude test facility at Stuttgart University. The LP turbine blade profiles are thought to be state of the art in terms of their lift and design philosophy. The two high lift profiles represent slightly different styles of velocity distribution. The first high-lift profile comes from a two stage LP turbine (the BR710 cold-flow, high-lift demonstrator rig). The second high-lift profile tested is from a three-stage machine (the BR715 LPT rig). The ultra-high lift profile measurements come from a redesign of the BR715 LP turbine: this is designated the BR715UHL LP turbine. This ultra high-lift profile represents a 12% reduction in blade numbers compared to the original BR715 turbine. The results from NGV2 on all of the turbines show “classical” unsteady boundary layer behaviour. The measurements from NGV3 (of both the BR715 and BR715UHL turbines) are more complicated, but can still be broken down into classical regions of wake-induced transition, natural transition and calming. The wakes from both upstream rotors and NGVs interact in a complicated manner, affecting the suction surface boundary layer of NGV3. This has important implications for the prediction of the flows on blade rows in multistage environments.


Author(s):  
Martin Lipfert ◽  
Martin Marx ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Inga Mahle ◽  
...  

In a cooperative project between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines GmbH a two-stage low pressure turbine with integrated 3D airfoil and endwall contouring is tested. The experimental data taken in the altitude test-facility study the effect of high incidence in off-design operation. Steady measurements are covering a wide range of Reynolds numbers between 40,000 and 180,000. The results are compared with steady multistage CFD predictions with a focus on the stator rows. A first unsteady simulation is taken into account as well. The CFD simulations include leakage flow paths with disc cavities modeled. Compared to design operation the extreme off-design high-incidence conditions lead to a different flow-field Reynolds number sensitivity. Airfoil lift data reveals changing incidence with Reynolds number of the second stage. Increased leading edge loading of the second vane indicates a strong cross channel pressure gradient in the second stage leading to larger secondary flow regions and a more three-dimensional flow field. Global characteristics and area traverse data of the second vane are discussed. The unsteady CFD approach indicates improvement in the numerical prediction of the predominating flow field.


Author(s):  
Marion Mack ◽  
Roland Brachmanski ◽  
Reinhard Niehuis

The performance of the low pressure turbine (LPT) can vary appreciably, because this component operates under a wide range of Reynolds numbers. At higher Reynolds numbers, mid and aft loaded profiles have the advantage that transition of suction side boundary layer happens further downstream than at front loaded profiles, resulting in lower profile loss. At lower Reynolds numbers, aft loading of the blade can mean that if a suction side separation exists, it may remain open up to the trailing edge. This is especially the case when blade lift is increased via increased pitch to chord ratio. There is a trend in research towards exploring the effect of coupling boundary layer control with highly loaded turbine blades, in order to maximize performance over the full relevant Reynolds number range. In an earlier work, pulsed blowing with fluidic oscillators was shown to be effective in reducing the extent of the separated flow region and to significantly decrease the profile losses caused by separation over a wide range of Reynolds numbers. These experiments were carried out in the High-Speed Cascade Wind Tunnel of the German Federal Armed Forces University Munich, Germany, which allows to capture the effects of pulsed blowing at engine relevant conditions. The assumed control mechanism was the triggering of boundary layer transition by excitation of the Tollmien-Schlichting waves. The current work aims to gain further insight into the effects of pulsed blowing. It investigates the effect of a highly efficient configuration of pulsed blowing at a frequency of 9.5 kHz on the boundary layer at a Reynolds number of 70000 and exit Mach number of 0.6. The boundary layer profiles were measured at five positions between peak Mach number and the trailing edge with hot wire anemometry and pneumatic probes. Experiments were conducted with and without actuation under steady as well as periodically unsteady inflow conditions. The results show the development of the boundary layer and its interaction with incoming wakes. It is shown that pulsed blowing accelerates transition over the separation bubble and drastically reduces the boundary layer thickness.


Author(s):  
Michele Marconcini ◽  
Filippo Rubechini ◽  
Roberto Pacciani ◽  
Andrea Arnone ◽  
Francesco Bertini

Low pressure turbine airfoils of the present generation usually operate at subsonic conditions, with exit Mach numbers of about 0.6. To reduce the costs of experimental programs it can be convenient to carry out measurements in low speed tunnels in order to determine the cascades performance. Generally speaking, low speed tests are usually carried out on airfoils with modified shape, in order to compensate for the effects of compressibility. A scaling procedure for high-lift, low pressure turbine airfoils to be studied in low speed conditions is presented and discussed. The proposed procedure is based on the matching of a prescribed blade load distribution between the low speed airfoil and the actual one. Such a requirement is fulfilled via an Artificial Neural Network (ANN) methodology and a detailed parameterization of the airfoil. A RANS solver is used to guide the redesign process. The comparison between high and low speed profiles is carried out, over a wide range of Reynolds numbers, by using a novel three-equation, transition-sensitive, turbulence model. Such a model is based on the coupling of an additional transport equation for the so-called laminar kinetic energy (LKE) with the Wilcox k–ω model and it has proven to be effective for transitional, separated-flow configurations of high-lift cascade flows.


Author(s):  
Xingxu Xue ◽  
Songtao Wang ◽  
Lei Luo ◽  
Xun Zhou

Numerical simulation was carried out to study the influences of blade-bowing designs based on a highly loaded cascade with large turning angle, while the compound bowing design showed much lower endwall loss than the conventional design in this study. Generally, it showed that the increased turning angle would strengthen the adverse pressure gradient on the suction surface, so the side effect of negative blade bowing angle would be enhanced because of the reduced flow filed stability near suction–endwall corner. However, the positive corner bowing angle that applied in the compound bowing design would enhance the flow field stability near the suction–endwall corner by adjusting spanwise pressure gradient and velocity triangle, so the side effect of negative blade bowing angle would be suppressed and lead to weaker secondary flow. In detail, the blade bowing angle (as well as the corner bowing angle in the conventional bowed cascades) was varied from −5° to −30° in this study, while the reductions of the loss coefficient in the compound bowed cascades were about 0.662.16 times higher (the absolute differences were about 0.0067 0.0097) than the corresponding conventional bowed cascades. Moreover, the Reynolds number and Mach number at the outlet plane were kept at 2.4 × 105 and 0.6, respectively, during the bowing design to ensure the comparability.


Author(s):  
Ken-ichi Funazaki ◽  
Daichi Murakami ◽  
Yasuhiro Okamura

Abstract This study carries out parametric investigations on aerodynamic loss of various types of LP turbine airfoils characterized with different flow deceleration rates (DR) on their suction surfaces under the realistic flow conditions such as wake inflow and freestream turbulence. The Reynolds number examined in this study ranges from 57,000 to 170,000. As for the freestream turbulence, two levels of the turbulence are used, i.e., about 1.2% and 3.5%. Stagnation pressure distributions downstream of each of the airfoil cascades are measured by use of a Pitot tube, while steady-state and unsteady boundary-layers are measured over the rear part of suction surface and pressure side near the trailing edge using a single hot-wire probe. The measured boundary-layer data are used to estimate the cascade loss along with RANS (Reynolds-Averaged Navier-Stokes) simulations by taking advantage of the momentum-theory based Denton’s method. First, relationships between the cascade loss for each flow condition and DR are examined. The estimated loss values are then compared with the measured cascade loss to check the validity of the loss estimation method, which is a derivative of Denton’s method, under the realistic flow conditions.


1998 ◽  
Vol 120 (1) ◽  
pp. 28-35 ◽  
Author(s):  
V. Schulte ◽  
H. P. Hodson

The development of the unsteady suction side boundary layer of a highly loaded LP turbine blade has been investigated in a rectilinear cascade experiment. Upstream rotor wakes were simulated with a moving-bar wake generator. A variety of cases with different wake-passing frequencies, different wake strength, and different Reynolds numbers were tested. Boundary layer surveys have been obtained with a single hotwire probe. Wall shear stress has been investigated with surface-mounted hot-film gages. Losses have been measured. The suction surface boundary layer development of a modern highly loaded LP turbine blade is shown to be dominated by effects associated with unsteady wake-passing. Whereas without wakes the boundary layer features a large separation bubble at a typical cruise Reynolds number, the bubble was largely suppressed if subjected to unsteady wake-passing at a typical frequency and wake strength. Transitional patches and becalmed regions, induced by the wake, dominated the boundary layer development. The becalmed regions inhibited transition and separation and are shown to reduce the loss of the wake-affected boundary layer. An optimum wake-passing frequency exists at cruise Reynolds numbers. For a selected wake-passing frequency and wake strength, the profile loss is almost independent of Reynolds number. This demonstrates a potential to design highly loaded LP turbine profiles without suffering large losses at low Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document