Time-Linearized Forced Response Analysis of a Counter Rotating Fan: Part II — Analysis of the DLR CRISP2 Model

Author(s):  
Io Eunice Gómez Fernández ◽  
Michael Blocher

Over the last 3 years, several Institutes of the German Aerospace Center (DLR) investigated the possible gains of a counter rotating fan arrangement manufactured from CFRP designed with an automated optimization tool chain. While counter rotating fans promise aerodynamic efficiency improvements, they might suffer from aerodynamic exitation phenomena as well. The wakes, potential fields and shocks on the blade suction sides might cause blade vibrations leading to high cycle fatigue. Therefore, numerical investigations into aerodynamic excitation are necessary to estimate the amplitude of induced vibrations. At the Institute of Aeroelasticity, a time-linearized loosely coupled approach was used to determine the aerodynamic forcing of the blade rows of this counter rotating fan arrangement. A finite element model consisting of shell elements was created for the blades in order to be able to model the CFRP material properties. Subsequently, nonlinear finite element load calculations (inertia and blade surface pressure) with a modal analysis in the last step were performed to generate a Campbell diagram of the rotor blades. Critical operating points were identified from the Campbell diagram. Nonlinear steady CFD simulations of these operating points were performed. Based on these calculations, time-linearized unsteady simulations at the crititcal inter-blade phase angle were performed with forced blade motion to determine the aerodynamic damping. Similarly, time-linearized unsteady simulations were performed with gust boundary conditions to determine the aerodynamic forcing. The results of aerodynamic damping and aerodynamic forcing simulations were combined to yield the predicted forced response amplitude of the eigenmode shape that is going to be excited at the respective critical operating point. As a last step, a nonlinear finite element displacement simulation is conducted to determine the static and dynamic stresses and strains during a forced response vibration. These static and dynamic stresses and strains are then compared to the material properties of the CFRP material to determine if the blades will keep their structural integrity over time. The results of these calculations are presented and discussed.

Author(s):  
Parthasarathy Vasanthakumar ◽  
Paul-Benjamin Ebel

The forced response of turbomachinery blades is a primary source of high cycle fatigue (HCF) failure. This paper deals with the computational prediction of blade forced response of a transonic fan stage that consists of a highly loaded rotor along with a tandem stator. In the case of a transonic fan, the forced response of the rotor due to the downstream stator assumes significance because of the transonic flow field. The objective of the present work is to determine the forced response of the rotor induced as a result of the unsteady flow field due to the downstream stator vanes. Three dimensional, Navier-Stokes flow solver TRACE is used to numerically analyse the forced response of the fan. A total of 11 resonant crossings as identified in the Campbell diagram are examined and the corresponding modeshapes are obtained from finite element modal analysis. The interaction between fluid and structure is dealt with in a loosely coupled manner based on the assumption of linear aerodynamic damping. The aerodynamic forcing is obtained by a nonlinear unsteady Navier-Stokes computation and the aerodynamic damping is obtained by a time-linearized Navier-Stokes computation. The forced response solution is obtained by the energy method allowing calculations to be performed directly in physical space. Using the modal forcing and damping, the forced response amplitude can be directly computed at the resonance crossings. For forced response solution, the equilibrium amplitude is reached when the work done on the blade by the external forcing function is equal to the work done by the system damping (aerodynamic and structural) force. A comprehensive analysis of unsteady aerodynamic forces on the rotor blade surface as a result of forced response of a highly loaded transonic fan is carried out. In addition, the correspondence between the location of high stress zones identified from the finite element analysis and the regions of high modal force identified from the CFD analysis is also discussed.


Author(s):  
Aaron D. Gupta

Abstract A dynamic elastic large displacement response analysis of the bottom floor of a generic vehicle hull model subjected to empirically obtained coupled blast and impact loads has been conducted using three-dimensional (3-D) shell elements in the ADINA nonlinear dynamic finite element analysis code. For the impulse-dominated problem, the impact load is a square wave step function concentrated load while the blast loads from the detonation of an explosive are a series of distributed pressure loads approximated as triangular impulse loads with linear decay and varying arrival and duration times. The 3-D numerical model has been generated using the PATRAN3 modeling code and converted to the ADINA finite element input data deck using the ADINA translator and careful inclusion of appropriate material properties as well as initial and boundary conditions. Monolithic single-layered four-noded quad shell elements were sufficient to model the bottom floor and the left- and right-horizontal and vertical sponsons as well as the lower front glacis. Although several simplifying assumptions and approximations are made during the generation of the basic floor model, material properties, and the forcing functions, the investigation gives valuable insight into the response behavior of a generic hull bottom floor to externally applied coupled blast and impact loads and provides an inexpensive nondestructive method of evaluation of the structural integrity of modern vehicles subjected to spatially varying transient loads.


2013 ◽  
Vol 811 ◽  
pp. 228-233
Author(s):  
Yang Yang ◽  
Yuan Ying Qiu ◽  
Gai Juan Wang

The response analysis of a large cable net bearing wind load is conducted by the nonlinear finite element method. First, the form-finding calculation of the cable net structure is carried out to find an equilibrium state which can make the pretensions and sags of the wires meet the given requirements. Then the static analyses of the finite element model of the cable net structure under different wind loads are conducted to assess whether the cable net structure meets the requirements for strength. The work of this paper establishes the foundation for the design of a large cable antenna.


Author(s):  
E. P. Petrov

A generic method for analysis of nonlinear forced response for bladed discs with friction dampers of different design has been developed. The method uses explicit finite element modelling of dampers, which allows accurate description of flexibility and, for the first time, dynamic properties of dampers of different design in multiharmonic analysis of bladed discs. Large-scale finite element damper and bladed disc models containing 104–106 DOFs can be used. These models, together with detailed description of contact interactions over contact interface areas, allow for any level of refinement required for modelling of elastic damper bodies and for modelling of friction contact interactions. Numerical studies of realistic bladed discs have been performed with three different types of underplatform dampers: (i) a ‘cottage-roof’ (called also ‘wedge’) damper; (ii) seal wire damper; and (iii) a strip damper. Effects of contact interface parameters and excitation levels on damping properties of the dampers and forced response are extensively explored.


Author(s):  
Bernd Beirow ◽  
Arnold Kühhorn ◽  
Thomas Giersch ◽  
Jens Nipkau

The forced response of the first rotor of an E3E-type high pressure compressor blisk is analyzed with regard to varying mistuning, varying engine order excitations and the consideration of aeroelastic effects. For that purpose, SNM-based reduced order models are used in which the disk remains unchanged while the Young’s modulus of each blade is used to define experimentally adjusted as well as intentional mistuning patterns. The aerodynamic influence coefficient technique is employed to model aeroelastic interactions. Furthermore, based on optimization analyses and depending on the exciting EO and aerodynamic influences it is searched for the worst as well as the best mistuning distributions with respect to the maximum blade displacement. Genetic algorithms using blade stiffness variations as vector of design variables and the maximum blade displacement as objective function are applied. An allowed limit of the blades’ Young’s modulus standard deviation is formulated as secondary condition. In particular, the question is addressed if and how far the aeroelastic impact, mainly causing aerodynamic damping, combined with mistuning can even yield a reduction of the forced response compared to the ideally tuned blisk. It is shown that the strong dependence of the aerodynamic damping on the inter-blade phase angle is the main driver for a possible response attenuation considering the fundamental blade mode. The results of the optimization analyses are compared to the forced response due to real, experimentally determined frequency mistuning as well as intentional mistuning.


Author(s):  
Christian Siewert ◽  
Lars Panning ◽  
Jörg Wallaschek ◽  
Christoph Richter

In turbomachinery applications, the rotating turbine blades are subjected to high static and dynamic loads. The static loads are due to centrifugal stresses and thermal strains whereas the dynamic loads are caused by the fluctuating gas forces resulting in high vibration amplitudes, which can lead to high cycle fatigue failures. Hence, one of the main tasks in the design of turbomachinery blading is the reduction in the blade vibration amplitudes to avoid high dynamic stresses. Thus, coupling devices like underplatform dampers and tip shrouds are applied to the blading to reduce the vibration amplitudes and, therefore, the dynamic stresses by introducing nonlinear contact forces to the system. In order to predict the resulting vibration amplitudes, a reduced order model of a shrouded turbine blading is presented including a contact model to determine the nonlinear contact forces. To compute the forced response, the resulting nonlinear equations of motion are solved in the frequency domain using the multiharmonic balance method because of the high computational efficiency of this approach. The transformation from the time domain into the frequency domain is done by applying Galerkin’s method in combination with a multiharmonic approximation function for the unknown vibration response. This results in an algebraic system of nonlinear equations in the frequency domain, which has to be solved iteratively in order to compute the vibration response. The presented methodology is applied to the calculation of the forced response of a nonlinear coupled turbine blading in the frequency domain.


Author(s):  
E. P. Petrov

A generic method for analysis of nonlinear forced response for bladed disks with friction dampers of different designs has been developed. The method uses explicit finite element modeling of dampers, which allows accurate description of flexibility and, for the first time, dynamic properties of dampers of different designs in multiharmonic analysis of bladed disks. Large-scale finite element damper and bladed disk models containing 104−106 degrees of freedom can be used. These models, together with detailed description of contact interactions over contact interface areas, allow for any level of refinement required for modeling of elastic damper bodies and for modeling of friction contact interactions. Numerical studies of realistic bladed disks have been performed with three different types of underplatform dampers: (i) a “cottage-roof” (also called “wedge”) damper, (ii) seal wire damper, and (iii) a strip damper. Effects of contact interface parameters and excitation levels on damping properties of the dampers and forced response are extensively explored.


Sign in / Sign up

Export Citation Format

Share Document