Forced Response Analysis of a Transonic Fan

Author(s):  
Parthasarathy Vasanthakumar ◽  
Paul-Benjamin Ebel

The forced response of turbomachinery blades is a primary source of high cycle fatigue (HCF) failure. This paper deals with the computational prediction of blade forced response of a transonic fan stage that consists of a highly loaded rotor along with a tandem stator. In the case of a transonic fan, the forced response of the rotor due to the downstream stator assumes significance because of the transonic flow field. The objective of the present work is to determine the forced response of the rotor induced as a result of the unsteady flow field due to the downstream stator vanes. Three dimensional, Navier-Stokes flow solver TRACE is used to numerically analyse the forced response of the fan. A total of 11 resonant crossings as identified in the Campbell diagram are examined and the corresponding modeshapes are obtained from finite element modal analysis. The interaction between fluid and structure is dealt with in a loosely coupled manner based on the assumption of linear aerodynamic damping. The aerodynamic forcing is obtained by a nonlinear unsteady Navier-Stokes computation and the aerodynamic damping is obtained by a time-linearized Navier-Stokes computation. The forced response solution is obtained by the energy method allowing calculations to be performed directly in physical space. Using the modal forcing and damping, the forced response amplitude can be directly computed at the resonance crossings. For forced response solution, the equilibrium amplitude is reached when the work done on the blade by the external forcing function is equal to the work done by the system damping (aerodynamic and structural) force. A comprehensive analysis of unsteady aerodynamic forces on the rotor blade surface as a result of forced response of a highly loaded transonic fan is carried out. In addition, the correspondence between the location of high stress zones identified from the finite element analysis and the regions of high modal force identified from the CFD analysis is also discussed.

Author(s):  
Io Eunice Gómez Fernández ◽  
Michael Blocher

Over the last 3 years, several Institutes of the German Aerospace Center (DLR) investigated the possible gains of a counter rotating fan arrangement manufactured from CFRP designed with an automated optimization tool chain. While counter rotating fans promise aerodynamic efficiency improvements, they might suffer from aerodynamic exitation phenomena as well. The wakes, potential fields and shocks on the blade suction sides might cause blade vibrations leading to high cycle fatigue. Therefore, numerical investigations into aerodynamic excitation are necessary to estimate the amplitude of induced vibrations. At the Institute of Aeroelasticity, a time-linearized loosely coupled approach was used to determine the aerodynamic forcing of the blade rows of this counter rotating fan arrangement. A finite element model consisting of shell elements was created for the blades in order to be able to model the CFRP material properties. Subsequently, nonlinear finite element load calculations (inertia and blade surface pressure) with a modal analysis in the last step were performed to generate a Campbell diagram of the rotor blades. Critical operating points were identified from the Campbell diagram. Nonlinear steady CFD simulations of these operating points were performed. Based on these calculations, time-linearized unsteady simulations at the crititcal inter-blade phase angle were performed with forced blade motion to determine the aerodynamic damping. Similarly, time-linearized unsteady simulations were performed with gust boundary conditions to determine the aerodynamic forcing. The results of aerodynamic damping and aerodynamic forcing simulations were combined to yield the predicted forced response amplitude of the eigenmode shape that is going to be excited at the respective critical operating point. As a last step, a nonlinear finite element displacement simulation is conducted to determine the static and dynamic stresses and strains during a forced response vibration. These static and dynamic stresses and strains are then compared to the material properties of the CFRP material to determine if the blades will keep their structural integrity over time. The results of these calculations are presented and discussed.


Author(s):  
M. Vahdati ◽  
C. Breard ◽  
G. Simpson ◽  
M. Imregun

This paper will focus on core-compressor forced response with the aim to develop two design criteria, the so-called chordwise cumulative modal force and heightwise cumulative force, to assess the potential severity of the vibration levels from the correlation between the unsteady pressure distribution on the blade’s surface and the structural modeshape. It is also possible to rank various blade designs since the proposed criterion is sensitive to changes in both unsteady aerodynamic loads and the vibration modeshapes. The proposed methodology was applied to a typical core-compressor forced response case for which measured data were available. The Reynolds-averaged Navier-Stokes equations were used to represent the flow in a non-linear time-accurate fashion on unstructured meshes of mixed elements. The structural model was based on a standard finite element representation from which the vibration modes were extracted. The blade flexibility was included in the model by coupling the finite element model to the unsteady flow model in a time-accurate fashion. A series of numerical experiments were conducted by altering the stator wake and using the proposed indicator functions to minimize the rotor response levels. It was shown that a fourfold response reduction was possible for a certain mode with only a minor modification of the blade.


Author(s):  
Minghao Pan ◽  
Paul Petrie-Repar ◽  
Hans Mårtensson ◽  
Tianrui Sun ◽  
Tobias Gezork

In turbomachines, forced response of blades is blade vibrations due to external aerodynamic excitations and it can lead to blade failures which can have fatal or severe economic consequences. The estimation of the level of vibration due to forced response is dependent on the determination of aerodynamic damping. The most critical cases for forced response occur at high reduced frequencies. This paper investigates the determination of aerodynamic damping at high reduced frequencies. The aerodynamic damping was calculated by a linearized Navier-Stokes flow solver with exact 3D non-reflecting boundary conditions. The method was validated using Standard Configuration 8, a two-dimensional flat plate. Good agreement with the reference data at reduced frequency 2.0 was achieved and grid converged solutions with reduced frequency up to 16.0 were obtained. It was concluded that at least 20 cells per wavelength is required. A 3D profile was also investigated: an aeroelastic turbine rig (AETR) which is a subsonic turbine case. In the AETR case, the first bending mode with reduced frequency 2.0 was studied. The 3D acoustic modes were calculated at the far-fields and the propagating amplitude was plotted as a function of circumferential mode index and radial order. This plot identified six acoustic resonance points which included two points corresponding to the first radial modes. The aerodynamic damping as a function of nodal diameter was also calculated and plotted. There were six distinct peaks which occurred in the damping curve and these peaks correspond to the six resonance points. This demonstrates for the first time that acoustic resonances due to higher order radial acoustic modes can affect the aerodynamic damping at high reduced frequencies.


Author(s):  
Fanny M. Besem ◽  
Robert E. Kielb ◽  
Nicole L. Key

The frequency mistuning that occurs due to manufacturing variations and wear and tear of the blades can have a significant effect on the flutter and forced response behavior of a blade row. Similarly, asymmetries in the aerodynamic or excitation forces can tremendously affect the blade responses. When conducting CFD simulations, all blades are assumed to be tuned (i.e. to have the same natural frequency) and the aerodynamic forces are assumed to be the same on each blade except for a shift in interblade phase angle. The blades are thus predicted to vibrate at the same amplitude. However, when the system is mistuned or when asymmetries are present, some blades can vibrate with a much higher amplitude than the tuned, symmetric system. In this research, we first conduct a deterministic forced response analysis of a mistuned rotor and compare the results to experimental data from a compressor rig. It is shown that tuned CFD results cannot be compared directly with experimental data because of the impact of frequency mistuning on forced response predictions. Moreover, the individual impact of frequency, aerodynamic, and forcing function perturbations on the predictions is assessed, leading to the conclusion that a mistuned system has to be studied probabilistically. Finally, all perturbations are combined and Monte-Carlo simulations are conducted to obtain the range of blade response amplitudes that a designer could expect.


Author(s):  
E. P. Petrov

A generic method for analysis of nonlinear forced response for bladed discs with friction dampers of different design has been developed. The method uses explicit finite element modelling of dampers, which allows accurate description of flexibility and, for the first time, dynamic properties of dampers of different design in multiharmonic analysis of bladed discs. Large-scale finite element damper and bladed disc models containing 104–106 DOFs can be used. These models, together with detailed description of contact interactions over contact interface areas, allow for any level of refinement required for modelling of elastic damper bodies and for modelling of friction contact interactions. Numerical studies of realistic bladed discs have been performed with three different types of underplatform dampers: (i) a ‘cottage-roof’ (called also ‘wedge’) damper; (ii) seal wire damper; and (iii) a strip damper. Effects of contact interface parameters and excitation levels on damping properties of the dampers and forced response are extensively explored.


Author(s):  
Bernd Beirow ◽  
Arnold Kühhorn ◽  
Thomas Giersch ◽  
Jens Nipkau

The forced response of the first rotor of an E3E-type high pressure compressor blisk is analyzed with regard to varying mistuning, varying engine order excitations and the consideration of aeroelastic effects. For that purpose, SNM-based reduced order models are used in which the disk remains unchanged while the Young’s modulus of each blade is used to define experimentally adjusted as well as intentional mistuning patterns. The aerodynamic influence coefficient technique is employed to model aeroelastic interactions. Furthermore, based on optimization analyses and depending on the exciting EO and aerodynamic influences it is searched for the worst as well as the best mistuning distributions with respect to the maximum blade displacement. Genetic algorithms using blade stiffness variations as vector of design variables and the maximum blade displacement as objective function are applied. An allowed limit of the blades’ Young’s modulus standard deviation is formulated as secondary condition. In particular, the question is addressed if and how far the aeroelastic impact, mainly causing aerodynamic damping, combined with mistuning can even yield a reduction of the forced response compared to the ideally tuned blisk. It is shown that the strong dependence of the aerodynamic damping on the inter-blade phase angle is the main driver for a possible response attenuation considering the fundamental blade mode. The results of the optimization analyses are compared to the forced response due to real, experimentally determined frequency mistuning as well as intentional mistuning.


Author(s):  
Charles Seeley ◽  
Sunil Patil ◽  
Andy Madden ◽  
Stuart Connell ◽  
Gwenael Hauet ◽  
...  

Abstract Hydroelectric power generation accounts for 7% of the total world electric energy production. Francis turbines are often employed in large-scale hydro projects and represent 60% of the total installed base. Outputs up to 800 MW are available and efficiencies of 95% are common. Cost, performance, and design cycle time are factors that continue to drive new designs as well as retrofits. This motivates the development of more sophisticated analysis tools to better assess runner performance earlier in the design phase. The focus of this paper is to demonstrate high fidelity and time-efficient runner damping and forced response calculations based on one-way fluid-structure interaction (FSI) using loosely coupled commercial finite element analysis (FEA) and computational fluid dynamics (CFD) codes. The runner damping is evaluated based on the work done by the fluid on the runner. The calculation of the work first involves determining the runner mode shapes and natural frequencies using a cyclic symmetric FEA model with structural elements to represent the runner hardware, and acoustic fluid elements to represent the mass loading effect of the fluid. The mode shapes are then used in a transient CFD calculation to determine the damping which represents the work done by the fluid on the runner. Positive damping represents stability from flutter perspective while negative damping represents unstable operating conditions. A transient CFD calculation was performed on a runner to obtain engine order forcing function from upstream stationary vanes. This unsteady forcing function was mapped to the FEA model. Care is taken to account for the proper inter-blade phase angle on the cyclic symmetric model. The hydraulic damping from flutter calculations was also provided as input to the forced response. The forced response is then determined using this equivalent proportional damping and modal superposition of the FEA model that includes both the structural and acoustic elements. Results of the developed analysis procedure are presented based on the Tokke runner, that has been the basis of several studies through the Norwegian HydroPower Center. Unique features of the workflow and modeling approaches are discussed in detail. Benefits and challenges for both the FEA model and the CFD model are discussed. The importance of the hydraulic damping, that is traditionally ignored in previous analysis is discussed as well. No validation data is available for the forced response, so this paper is focused on the methodology for the calculations.


2014 ◽  
Vol 1061-1062 ◽  
pp. 767-770
Author(s):  
Fan Lei ◽  
Yu Lin Deng ◽  
Xiao Hua Zhao

It’s important to study the vibration characteristic of submarine pipelines under current for reducing the harmful vibration. Research on fluid-structure interaction of submarine pipeline under current was presented. The pressure and velocity distribution of flow field around pipe with different velocity of flow were studied by ANSYS finite element software. The results show that the pipe is under the action of drag force along the direction of flow. The drag force increases with the flow velocity.


2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Chih-Neng Hsu

Complex mode and single mode approach analyses are individually developed to predict blade flutter and forced response. These analyses provide a system approach for predicting potential aeroelastic problems of blades. The flow field properties of a blade are analyzed as aero input and combined with a finite element model to calculate the unsteady aero damping of the blade surface. Forcing function generators, including inlet and distortions, are provided to calculate the forced response of turbomachinery blading. The structural dynamic characteristics are obtained based on the blade mode shape obtained by using the finite element model. These approaches can provide turbine engine manufacturers, cogenerators, gas turbine generators, microturbine generators, and engine manufacturers with an analysis system to remedy existing flutter and forced response methods. The findings of this study can be widely applied to fans, compressors, energy turbine power plants, electricity, and cost saving analyses.


Sign in / Sign up

Export Citation Format

Share Document