A Numerical Study of Inlet Geometry for a Low Inertia Mixed Flow Turbocharger Turbine

Author(s):  
Thomas M. Leonard ◽  
Stephen Spence ◽  
Juliana Early ◽  
Dietmar Filsinger

Mixed flow turbines can offer improvements over typical radial turbines used in automotive turbochargers, with regards to transient performance and low velocity ratio efficiency. Turbine rotor mass dominates the rotating inertia of the turbocharger, and any reductions of mass in the outer radii of the wheel, including the rotor back-disk, can significantly reduce this inertia and improve the acceleration of the assembly. Off-design, low velocity ratio conditions are typified by highly tangential flow at the rotor inlet and a non-zero inlet blade angle is preferred for such operating conditions. This is achievable in a Mixed Flow Turbine without increasing bending stresses within the rotor blade, which is beneficial in high speed and high inlet temperature turbine design. A range of mixed flow turbine rotors was designed with varying cone angle and inlet blade angle and each was assessed at a number of operating points. These rotors were based on an existing radial flow turbine, and both the hub and shroud contours and exducer geometry were maintained. The inertia of each rotor was also considered. The results indicated that there was a trade-off between efficiency and inertia for the rotors and certain designs may be beneficial for the transient performance of downsized, turbocharged engines.

Author(s):  
Thomas Leonard ◽  
Stephen Spence ◽  
Dietmar Filsinger ◽  
Andre Starke

Mixed flow turbines offer potential benefits for turbocharged engines when considering off-design performance and engine transient behaviour. Although the performance and use of mixed flow turbines is described in the literature, little is published on the combined impact of the cone angle and the inlet blade angle, which are the defining features of such turbines. Numerical simulations were completed using a CFD model that was validated against experimental measurements for a baseline geometry. The mechanical impact of the design changes was also analysed. Based on the results of the numerical study, two rotors of different blade angle and cone angle were selected and manufactured. These rotors were tested using the QUB low temperature turbine test rig, which allowed for accurate and wide range mapping of the turbine performance to low values of velocity ratio. The performance results from these additional rotors were used to further validate the numerical findings. The numerical model was used to understand the underlying physical reasons for the measured performance differences through detailed consideration of the flow field at rotor inlet, and to document how the loss mechanisms and secondary flow structures developed with varying rotor inlet geometry. It was observed that large inlet blade cone angles resulted in strong separation and flow blockage near the hub at off-design conditions, which greatly reduced efficiency. However, the significant rotor inertia benefits achieved with the large blade cone angles were shown to compensate for the efficiency penalties and could be expected to deliver improved transient performance in downsized automotive engine applications.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Thomas Leonard ◽  
Stephen Spence ◽  
Andre Starke ◽  
Dietmar Filsinger

Mixed flow turbines (MFTs) offer potential benefits for turbocharged engines when considering off-design performance and engine transient behavior. Although the performance and use of MFTs are described in the literature, little is published on the combined impact of the cone angle and the inlet blade angle, which are the defining features of such turbines. Numerical simulations were completed using a computational fluid dynamics (CFD) model that was validated against experimental measurements for a baseline geometry. The mechanical impact of the design changes was also analyzed. Based on the results of the numerical study, two rotors of different blade angle and cone angle were selected and manufactured. These rotors were tested using the Queen's University Belfast (QUB) low-temperature turbine test rig, which allowed for accurate and wide-range mapping of the turbine performance to low values of the velocity ratio. The performance results from these additional rotors were used to further validate the numerical findings. The numerical model was used to understand the underlying physical reasons for the measured performance differences through detailed consideration of the flow field at the rotor inlet and to document how the loss mechanisms and secondary flow structures developed with varying rotor inlet geometry. It was observed that large inlet blade cone angles resulted in strong separation and flow blockage near the hub at off-design conditions, which greatly reduced efficiency. However, the significant rotor inertia benefits achieved with the large blade cone angles were shown to compensate for the efficiency penalties and could be expected to deliver improved transient performance in downsized automotive engine applications.


2021 ◽  
Author(s):  
Kiran Kumar ◽  
Vasudev Chaudhari ◽  
Srikrishna Sahu ◽  
Ravindra G. Devi

Abstract Fouling in compressor blades due to dirt deposition is a major issue in land-based gas turbines as it impedes the compressor performance and degrades the overall engine efficiency. The online water washing approach is an effective alternate for early-stage compressor blade cleaning and to optimize the time span between offline washing and peak availability. In such case, typically a series of flat-fan nozzles are used at the engine bell mouth to inject water sprays into the inflowing air. However, optimizing the injector operating conditions is not a straightforward task mainly due to the tradeoff between blade cleaning effectiveness and material erosion. In this context, the knowledge on spray characteristics prior to blade impingement play a vital role, and the experimental spray characterization is crucial not only to understand the basic process but also to validate numerical models and simulations. The present paper investigates spray characteristics in a single flat-fan nozzle operated in the presence of a coflowing air within a wind-tunnel. A parametric investigation is carried out using different air flow velocity in the tunnel and inlet water temperature, while the liquid flow rate was maintained constant. The spray cone angle and liquid breakup length are measured using back-lit photography. The high-speed shadowgraphy technique is used for capturing the droplet images downstream of the injector exit. The images are processed following depth-of-filed correction to measure droplet size distribution. Droplet velocity is measured by the particle tracking velocimetry (PTV) technique. As both droplet size and velocity are known, the cross-stream evolution of local droplet mass and momentum flux are obtained at different axial locations which form the basis for studying the effectiveness of the blade cleaning process due to droplet impingement on a coupon coated with foulant of known mass.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Thomas Leonard ◽  
Stephen Spence ◽  
Dietmar Filsinger ◽  
Andre Starke

Abstract Mixed flow turbines offer additional design freedom compared with conventional radial turbines. This is useful in the automotive turbocharger application to reduce rotor inertia, which can be very beneficial for the transient response of a highly boosted downsized passenger car powertrain. A previously published study from the authors analyzed a series of nine mixed flow turbine rotors with varying blade cone angle and inlet blade angle. This paper reports an extension of that study with two further mixed flow turbine rotors where the chord length of the rotor blade was extended. The aim of this work was to understand both the aerodynamic and mechanical impacts of varying the chord length, particularly for the turbocharger application where off-design performance and transient response are very important. The baseline mixed flow rotor for this study had a blade cone angle of 30 deg and an inlet blade angle of 30 deg. Two further variations were produced; one with the trailing edge (TE) extended in the downstream direction across the entire blade span. In the second variation, the chord was extended at the hub corner only, while the shroud corner of the TE remained unchanged, with the aim of achieving some aerodynamic improvement while meeting mechanical requirements. When the blade was extended at both the hub and shroud, the inertia and stress levels increased significantly and the blade eigenfrequencies reduced. There was a significant improvement in peak efficiency, but the mechanical performance was unfavourable. The improvement in peak efficiency was mainly due to better exhaust diffuser performance and, therefore, would not be realized in most turbocharger installations. The blade that was extended at only the hub corner incurred very little additional inertia, and the centrifugal stresses and blade eigenfrequencies were improved. Consequently, it was possible to reduce the blade thickness at the TE in order to achieve a more aerodynamically optimized design. In this case, the mechanical performance was acceptable and there were efficiency improvements of up to 1.1% points at off-design conditions, with no reduction in peak efficiency or maximum mass flowrate. Therefore, the blade that was extended only at the hub produced some improvement within acceptable mechanical limits. The flow field features were considered for the three rotor geometries to explain the changes in loss and efficiency across the operating range.


Author(s):  
Mohammad H. Kurdi ◽  
Tony L. Schmitz ◽  
Raphael T. Haftka ◽  
Brian P. Mann

High-speed milling offers an efficient tool for developing cost effective manufacturing processes with acceptable dimensional accuracy. Realization of these benefits depends on an appropriate selection of preferred operating conditions. In a previous study, optimization was used to find these conditions for two objectives: material removal rate (MRR) and surface location error (SLE), with a Pareto front or tradeoff curve found for the two competing objectives. However, confidence in the optimization results depends on the uncertainty in the input parameters to the milling model (time finite element analysis was applied here for simultaneous prediction of stability and surface location error). In this paper the uncertainty of these input parameters such as cutting force coefficients, tool modal parameters, and cutting parameters is evaluated. The sensitivity of the maximum stable axial depth, blim, to each input parameter at each spindle speed is determined. This enables identification of parameters with high contribution to stability lobe uncertainty. Two methods are used to calculate uncertainty: 1) Monte Carlo simulation; and 2) numerical derivatives of the system eigenvalues. Once the uncertainty in axial depth is calculated, its effect is observed in the MRR and SLE uncertainties. This allows robust optimization that takes into consideration both performance and uncertainty.


Author(s):  
Maulana Arifin

Microturbine based on a parabolic dish solar concentrator runs at high speed and has large amplitudes of subsynchronous turbo-shaft motion due to the direct normal irradiance (DNI) fluctuation in daily operation. A detailed rotordynamics model coupled to a full fluid film radial or journal bearing model needs to be addressed for increasing performance and to ensure safe operating conditions. The present paper delivers predictions of rotor tip displacement in the microturbine rotor assembly supported by a journal bearing under non-linear vibrations. The rotor assembly operates at 72 krpm on the design speed and delivers a 40 kW power output with the turbine inlet temperature is about 950 °C. The turbo-shaft oil temperature range is between 50 °C to 90 °C. The vibrations on the tip radial compressor and turbine were presented and evaluated in the commercial software GT-Suite environment. The microturbine rotors assembly model shows good results in predicting maximum tip displacement at the rotors with respect to the frequency and time domain.


Author(s):  
Samuel P Lee ◽  
Martyn L Jupp ◽  
Simon M Barrans ◽  
Ambrose K Nickson

Current trends in the automotive industry towards engine downsizing means turbocharging now plays a vital role in engine performance. A turbocharger increases charge air density using a turbine to extract waste energy from the exhaust gas to drive a compressor. Most turbocharger applications employ a radial inflow turbine. However, to ensure radial stacking of the blade fibers and avoid excessive blade stresses, the inlet blade angle must remain at zero degrees, creating large incidence angles. Alternately, mixed flow turbines can offer non-zero blade angles while maintaining radial stacking of the blade fibers and reducing leading edge separation at low velocity ratios. Furthermore, the physical blade cone angle introduced reduces the blade mass at the rotor outer diameter reducing rotor inertia and improving turbine transient response. The current paper investigates the performance of a mixed flow turbine under a range of pulsating inlet flow conditions. A significant variation in incidence across the LE span was observed within the pulse, where the distribution of incidence over the LE span was also found to change over the duration of the pulse. Analysis of the secondary flow structures developing within the volute shows the non-uniform flow distribution at the volute outlet is the result of the Dean effect in the housing passage. In-depth analysis of the mixed flow effect is also included, showing that poor axial flow turning ahead of the rotor was evident, particularly at the hub, resulting in modest blade angles. This work shows that the complex secondary flow structures that develop in the turbine volute are heavily influenced by the inlet pulsating flow. In turn, this significantly impacts the rotor inlet conditions and rotor losses.


2012 ◽  
Vol 10 ◽  
pp. 48-52
Author(s):  
Ruchi Khare ◽  
Vishnu Prasad

Draft tube is an important component of the hydraulic reaction turbine and affects the overall performance of turbine to a large extent. The flow inside the draft tube is complex because of the whirling flow coming out of runner and its diffusion along the draft tube. The kinetic energy coming out of runner is recovered in draft tube and part of recovery meets the losses. In the present work, the computational fluid dynamics (CFD) has been used for flow simulation in complete mixed flow Francis turbine for performance analysis for energy recovery, losses and flow pattern in an elbow draft tube used in Francis turbine at different operating conditions. The overall performance of the turbine at some typical operating regimes is validated with the experimental results and found to be in close comparison.DOI: http://dx.doi.org/10.3126/hn.v10i0.7103 Hydro Nepal Vol.10 January 2012 48-52


Author(s):  
Srinivasa Rao Para ◽  
Xianchang Li ◽  
Ganesh Subbuswamy

To improve the gas turbine thermal performance, apart from using a high compression ratio, the turbine inlet temperature must be increased. Therefore, the gas temperature inside the combustion chamber needs to be maintained at a very high level. Hence, cooling of the combustor liner becomes critical. Among all the cooling techniques, film cooling has been successfully applied to cool the combustor liner. In film cooling, coolant air is introduced through discrete holes and forms a thin film between the hot gases and the inner surface of the liner, so that the inner wall can be protected from overheating. The film will be destroyed in the downstream flow because of mixing of hot and cold gases. The present work focuses on numerical study of film cooling under operating conditions, i.e., high temperature and pressure. The effect of coolant injection angles and blowing ratios on film cooling effectiveness is studied. A promising technology, cooling with mist injection, is studied under operating conditions. The effect of droplet size and mist concentration is also analyzed. The results of this study indicate that the film cooling effectiveness can increase ∼11% at gas turbine operating conditions with mist injection of 2% coolant air when droplets of 10μm and a blowing ratio of 1.0 are applied. The cooling performance can be further improved by higher mist concentration. The commercial CFD software, Fluent 6.3.26, is used in this study and the standard k-ε model with enhanced wall functions is adopted as the turbulence model.


Author(s):  
J. J. Hernández-Ortega ◽  
R. Zamora ◽  
J. Palacios ◽  
J. López ◽  
F. Faura

One of the most important problems encountered in die-casting processes is porosity due to air entrapment in the molten metal during the injection process. The aim of this work is to study experimentally and numerically the different air entrapment phenomena that may take place in the early stages of the filling of a vertical die cavity with a rectangular shape for operating conditions typically used in low and medium-pressure die-casting processes. Special attention is given to determining the influence of the gravitational forces on the flow pattern. Numerical simulation of the flow in the die cavity is carried out for the liquid phase using a commercial computational fluid dynamics (CFD) code (FLOW-3D) based on the solution algorithm-volume of fluid (SOLA-VOF) approach to solve the coupling between the momentum and mass conservation equations and to treat the free-surface, while the amount of air evacuated through vents is calculated by using an unsteady one-dimensional adiabatic model that retains friction effects. The main characteristics of the flow at the early instants of the die cavity filling are analyzed for different operating conditions, and the different flow patterns are summarized in a map as a function of the Reynolds and Froude numbers. Also, filling visualization experiments are carried out on a test bench using water as working fluid in a transparent die model and a high-speed camera. The numerical and experimental results obtained for the free-surface profile evolution are compared for different inlet velocities of the fluid and the viability of the numerical tools used to predict the final amount of trapped air in the die cavity is discussed.


Sign in / Sign up

Export Citation Format

Share Document